R83-915540-26

Mass and Momentum Turbulent Transport Experiments With Confined Swirling Coaxial Jets

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	i
SUMMARY	1
INTRODUCTION	3
Background Outline of Present Study	3 4
DESCRIPTION OF TEST APPARATUS AND PROCEDURES	7
Test Apparatus Flow Visualization LV and LIF Measurements Swirler Design Evaluation	7 8 9
FLOW VISUALIZATION RESULTS	13.
FOREWORD TO PRESENTATION OF RESULTS	16
DISCUSSION OF MEAN AND FLUCTUATING VELOCITY AND CONCENTRATION RESULTS	18.
Velocity Results Concentration Results	18
DISCUSSION OF TURBULENT TRANSPORT RESULTS	23
Momentum Transport Mass Transport	23 26
DISCUSSION OF SKEWNEWSS AND KURTOSIS RESULTS FOR VELOCITY AND CONCENTRATION-PROBABILITY DENSITY FUNCTIONS	29
Typical Probability Density Functions Skewness and Kurtosis Distributions	29 31
DISCUSSION OF SECOND CENTRAL MOMENT, SKEWNESS AND KURTOSIS RESULTS FOR MOMENTUM AND MASS TURBULENT TRANSPORT PROBABILITY DENSITY FUNCTIONS	
	34
Typical Turbulent Transport Rate Probability Density Functions Typical Momentum Turbulent Transport Results Typical Mass Turbulent Transport Results	34 35 36

SUMMARY OF RESULTS	38
REFERENCES	41
APPENDIX I - FLOW VISUALIZATION FOR ALL FLOW CONDITIONS	43
APPENDIX II - SWIRLER EXIT MEASUREMENTS	46
 APPENDIX III - DEFINITIONS OF SKEWNESS AND KURTOSIS FOR VELOCITY, CONCENTRATION, AND TRANSPORT PROBABILITY DENSITY FUNCTIONS	50
TABLES	52
FICURES	125

R83-915540-26

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the efforts of the following in the acquisition and preparation of data for this report: Dr. John C. Bennett, of the University of Connecticut, for the development of the laser velocimeter optical arrangement used to obtain momentum turbulent transport data in the r-0 plane; Mr. Robert J. Haas for obtaining the fast action photographs and high speed motion pictures used to record the flow visualization; and Ms. Susanne L. Orr for handling the computerized storage, plotting and tabulation of data. The authors also acknowledge Dr. C. J. Marek, the NASA project manager for this program, for his efforts in producing a magnetic tape containing the data used to determine the turbulent transport results presented in the report. Requests for this tape can be made to Dr. Marek.

Mass and Momentum Turbulent Transport Experiments With Confined Swirling Cosmial Jets

R. Roback
B. V. Johnson

SUMMARY

An experimental study of mixing downstream of swirling coaxial jets discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. This study was an extension of the mass and momentum turbulent transport experiments with nonswirling coaxial jets which had been conducted in a previous program.

The flow visualization studies indicated that five major shear regions exist in the flow field downstream of the swirling coaxial jets. The first four regions were previously observed in the flow field for nonswirling coaxial streams. They included: (1) a wake region between the inner and annular streams a short distance downstream of the inlet, (2) a large-eddy shear region between the inner and annular streams, (3) an annular recirculation zone adjacent to the inlet plane, and (4) a reattachment region downstream of the annular recirculation zone. A large recirculation region along the centerline was also observed for the swirling coaxial streams.

Simultaneous two component velocity measurements were made in the radial-axial (r-z) plane, the axial-azimuthal (z-0) plane and the radial-azimuthal (r-0) plane with the two color LV system. The velocity data pairs were used to determine a momentum transport probability density-function (p.d.f.) and average transport rates for each of three measurement planes. A combined LV/LIF system was used to simultaneously measure inner stream fluid concentration and one of the three velocity components. These concentration/velocity data pairs were used to determine the mass transport p.d.f. and average transport rate in the axial, radial, and azimuthal direction. The second central moment (rms fluctuation from the mean), skewness, and kurtosis for each mass and momentum transfer data set p.d.f.

The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling

(

R83-915540-26

flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

2

(+)

INTRODUCTION

Background

Computational procedures used to describe combustion processes are being developed and refined by a number of researchers (e.g., see Ref. 1 through 5). These computational procedures are used to predict the velocity, species concentration, temperature and reaction rate distribution within the combustors which in turn are used to determine combustor liner heat load, engine performance (combustion efficiency), pollution emissions (reaction products) and pattern factor (temperature distribution at turbine inlet). Because turbulent flow exists in most combustors of practical interest, the calculation procedures usually include mathematical models for the turbulent transport of mass (or species), momentum and heat. However, the prediction of combustion processes is very sensitive to the modeling of the mass and momentum transport processes and improper models result in inadequate predictions of combustion efficiency, liner heat load, emissions and exit temperature pattern factor.

The effort in the United States to improve and employ computational procedures for the prediction of aircraft gas turbine combustor processes is continuing in universities, government laboratories and the aircraft gas turbine industry. As part of the NASA program in this technology field, "Aerothermal Modeling" studies were conducted by three U.S. aircraft gas turbine manufacturers (Garrett, General Electric and Pratt & Whitney Aircraft Group) during 1982-1983. These studies were funded through the NASA Hot Section Technology (HOST) program and the results are/will be available in limited distribution reports (e.g., Ref. 6). The present (reported herein) and previous (Ref. 7) experimental studies were conducted as part of NASA's aerothermal modeling program.

The deficiencies in the current computational procedures have been attributed to weaknesses in the mathematical models, including the transport models, and in the numerical methods. One recommendation from a NASA workshop on combustion modeling was that the mathematical models used in the calculation procedures be validated using experiments specifically designed to provide the required input data. (Ref. 1). A first step in this process is the validation of mass and momentum transport models for constant density flows.

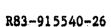
The data used to formulate and validate the turbulent transport models have been obtained primarily from velocity and momentum transport measurements because only a limited amount of concentration and mass transport data is available. The mass (species) transport data presently available are not sufficient to determine where inadequacies exist in the present models or to formulate improvements for the models. One reason for this situation is that the methods for simultaneously obtaining turbulent mass

(species) and momentum transport data often have been indirect, requiring compromising assumptions. To overcome these limitations, techniques have been developed to measure concentration and velocity simultaneously and, therefore obtain mass transport data. This data can be used to evaluate and improve combustion oriented turbulent transport models which include scalars such as concentration of species and temperature.

Several nonintrusive measurement techniques have been used to obtain velocity and concentration simultaneously in recirculating flows (e.g., Ref. 8). Raman scattering, marker nephelometry, and laser induced fluorescence (LIF) of a trace material are three examples of techniques previously used for obtaining the concentration portion of these measurements. In this program, laser induced fluorescence of fluorescein dye as a trace element in water was chosen to study the mixing between constant density fluids. This technique was chosen for the following reasons: (1) the dye and water are relatively inexpensive, (2) the wavelength required to excite the dye is compatible with current LDV equipment, and (3) the fluids are convenient to use. This choice restricts the measurement technique to the acquisition of constant density transport data. Although the combustion process has variable density gases mixing in a reacting environment, the mathematical transport models for combustors are expected to be based on the turbulent transport phenomena found in constant density mixing with modifications for variable density and reacting flows.

A preliminary effort at UTRC was initiated in 1975 to obtain quantitative concentration measurements with fluorescene dye (Paper 28 of Ref. 8). This effort at UTRC was continued in 1978 and made use of improved optics, data handling capabilities and operative procedures. exploratory study of mixing between confined coaxial jets was reported in Ref. 9. The current NASA sponsored study of mass and momentum turbulent transport experiments with nonswirling and swirling confined coaxial jets was initiated in 1981. The first phase of the study was conducted with nonswirling jets and was reported in Ref. 7. This second phase of the study, reported herein, was conducted with swirling coaxial jets. The current application of the combined LV/LIF measurement techniques along with the available data handling procedures provides an opportunity to obtain data which can be used to evaluate a number of computational methods and turbulent transport models. Results from Ref. 7 and the present study can be used to evaluate (1) the widely used two-equation turbulence model, (2) the Reynolds stress transport model and (3) the probability density function formulation for predicting turbulent transport and concentration fluctuations.

Outline of Present Study


Turbulent mixing of swirling confined coaxial jets is being studied because of its similarity to the combustor situation and thus its value in the mathematical modeling of combustor flow fields. Surveys of previous experimental studies were presented in Refs. 7 and 10. The turbulent mixing characteristics observed in the flow field produced by confined swirling coaxial jets are applicable to the combustion fluid mixing process because similar characteristics are found in gas turbine combustors and furnaces. The coaxial jets provide a method of introducing fuel and air into the combustion chamber. The annular recirculating flow zones associated with swirling and nonswirling coaxial jets expanding in enlarged ducts provide the pilot regions usually required to maintain flame in a combustor over a range of operating conditions.

The Reynolds number (Re = $\rho Vd/\mu$) of fluid flowing through various sections of aircraft gas turbine combustors vary from 10 to 10 and. therefore, the flows are generally turbulent. The lower Reynolds numbers occur for flow through cooling holes at engine idle conditions. The higher Reynolds numbers occur for though through swirlers or dilution jets at engine takeoff conditions. The flow conditions selected for the detailed data acquisition in the present study lead to axial Reynolds numbers of 15,900 and 47,500 for the inner and annular streams, respectively. These Reynolds numbers are factors of 5 to 20 greater than the transitional Reynolds number range and are in the range occurring in aircraft gas turbines. Therefore, turbulent transport phenomena measured in the present experiments are expected to be typical of the transport phenomena occurring in gas turbines.

The features which have been previously observed (Refs. 7, 10 and 11) in the flow fields produced by nonswirling and swirling coaxial jets confined in an enlarged duct are presented in Fig. 1. For both the swirling and nonswirling inlet conditions, the flow field contains (1) a wake region downstream of the annular jet/inner jet interface, (2) a shear layer between the inner and annular jets, (3) an annular recirculation cell, and (4) a reattachment region leading to the fully developed duct flow. The swirling flow also contains (5) a centerline recirculation cell. As shown in Fig. 1, the flow fields are relatively complex with interaction between several regions.

The extent of each region pictured in Fig. 1 has been shown to depend upon the dimensions of the coaxial jets and ducts and on the axial and azimuthal velocity distributions. Therefore, the present program was initiated with a flow visualization study to determine the character of the flow and the turbulent transport processes for the experimental configuration chosen for detailed study. The results of the flow visualization study were also used to determine the streamwise locations for obtaining the detailed velocity, concentration and turbulent transport rate data.

The major focus of this study was on the acquisition, reduction and analysis of velocity, concentration, mass turbulent transport rate and

momentum turbulent transport rate data at nine axial locations within the duct test section. Single component velocity data and inner jet fluid concentration data were obtained simultaneously to determine the local mass (or scalar) turbulent transport rate. Two velocity components were obtained simultaneously to determine the local momentum turbulent transport rates. As a result, the concentration and velocity distributions were obtained during at least two nonconsecutive data acquisition runs. The data set for each point measurement was analyzed and reduced to obtain the mean and three central moments for each probability density function (p.d.f.), i.e., the mean values, the rms deviation from the mean, the skewness of the p.d.f., and the flatness factor (or kurtosis) of the p.d.f. The mean and central moments were also obtained for the mass and momentum turbulent transport p.d.f.s as well as the velocity and concentration p.d.f.s. The reduced results for each data point set are tabulated and presented in this report. Graphical presentations of representative data are also included to aid in the discussion of the results. The discussion of these results will be related as applicable to each region shown in Fig.

DESCRIPTION OF TEST APPARATUS AND PROCEDURES

Test Apparatus

A schematic of the test facility used in this experimental program is presented in Fig. 2. The principal components of the facility are a water storage tank, a water transfer and metering system, a dye injection system, and a test section. For the laser velocimeter tests, the facility was run in a closed, recirculating loop. Water which was at a temperature of approximately 20C, was circulated by a pump from the storage tank, through metering valves and flow measuring devices to the inner jet and annular jet inlets of the inlet plenum. The water in the annular duct and inner tube entered the test section, mixed and discharged into the exhaust ducts, and was returned to the storage tank.

Whenever fluorescein dye was used as a tracer, such as for the flow visualization tests and the LV/LIF tests, the facility was operated in a single pass mode. The water from the exhaust ducts was discharged into the city sanitary sewer and fresh water replenished the system. For the flow visualization tests, dye was added to either the inner jet fluid or the annular jet fluid several feet upstream of the entrance to the test section to ensure uniform flow of dye into the test section. For the LV/LIF tests, uniform flow of the dye was ensured by adding the dye to a mixing chamber located a short distance from the dye micrometering valve. The 20 to 40 psi pressure drop across the valve was large compared to the other pressure drops in the system, thus ensuring a constant flow of the dye injected into the inner jet flow. The mixing chamber was large enough to ensure adequate mixing and a uniform dye concentration at the entrance of the test section. A magnetic rotating mixer was used in the dye reservoir to keep the dye well stirred and an inline filter was placed in the system to prevent clogging of the dye micrometering valve.

A sketch of the test section along with the inlet and exhaust sections is shown in Fig. 3. The test section was a 122 mm inside diameter by 1 m long, thin-wall glass tube. When flow visualization and optical exeriments are conducted in circular tubes, the water-glass-air interfaces can produce optical distortion. As shown in Fig. 3, the circular duct test section was enclosed in a rectangular, glass-walled optical box filled with water to reduce beam direction distortion as the laser beams passed from air through the glass wall of the duct and into the test section water. A ray tracing program was used to determine that the radial displacement of the probe volume was less than 0.03 mm and the offset of the measurement direction from radial was less than 0.05 deg for radii up to approximately 55 mm.

Water to the test section entered through an annular duct and a smaller inner jet tube. The water then exhausted through the exit duct, up over a weir and flowed to the drain. Since the top end of the exit duct

containing the weir was open to the atmosphere, the atmospheric pressure at the weir prevented the test section from becoming overpressurized. The inlet plenum for the annular duct contained three perforated plates to produce uniform flow and a honeycomb rection to remove swirl from the flow. The inner jet tube was fed with the same diameter hose for lengths of over 300 cm and included a 60-cm length of straight, nonflexible tubing, containing a perforated plate, positioned immediately upstream of the inlet plenum.

A detail of the inlet to the test section is shown in Fig. 4. The center tube was a 25 mm ID tube with a 7.5 deg half angle flare at the exit of the tube. The 59 mm ID annular duct contained a free-vortex swirler with 30 deg mean angle flow turning blades whose trailing edges were positioned approximately 51 mm from the entrance to the test section. The velocity and coordinate system utilized for the measurements is also shown in Fig. 4.

With this test section, measurements were usually made at a fixed axial location over a range of radial locations. The measured parameters discussed in this report are presented as functions of the radial position r, normalized by the radius of the test section, R, i.e., r/R. For this representation, the inner jet tube extends from r/R = 0.0 to r/R = 0.20 and the annular region containing the swirler extends from r/R = 0.25 to r/R = 0.48 (see Fig. 4). The inner and annular regions are separated by a thin wall which extends from r/R = 0.20 to r/R = 0.25. The region between r/R = 0.48 and r/R = 1.0 is a solid wall which acts like a backward facing step in the flow field.

Flow Visualization

Sketches of the optical arrangements used to obtain flow visualization photographs and motion pictures of the flow pattern in the radial/axial plane (r-z) and radial/azimuthal plane $(r-\theta)$ are shown in Figs. 5 and 6 respectively. The light source was an argon ion laser which produced a 1.25 mm diameter beam and was operated either in single line mode (0.4880 μm wavelength) or with all lines operating. The laser beam was passed through a glass or plastic round rod which acted as a cylindrical lens and caused the beam to diverge in one plane while maintaining a beam thickness of approximately 1 mm. The glass rod was positioned perpendicular to the flow axis to illuminate the r-z plane along the center line of the test section and parallel with the flow axis at selected axial locations to illuminate the r-0 plane. Cameras positioned at right angles to the plane being illuminated were used to view the flow. In general, the dye concentration was increased until the fluorescent light level was just high enough for good photographic contrast. When the dye concentration was too high, nonuniform light absorption along the light path occurred.

LV and LIF Measurements

Overview

The laser velocimeter (LV) and laser induced fluorescence (LIF) measurements were obtained using commercially available components. Some electronic components, which were not commercially available when first required at UTRC, were designed and fabricated by the UTRC instrumentation group. The equipment utilized for each measurement will be described as the technique is discussed.

The LV measurement system employed in these experiments is sketched in Fig. 7 and utilized the two-color LV optics system detailed in Fig. 8. The two-color LV concept utilizes the two strong laser lines of an Argon ion laser at 0.4880 µm (blue) and 0.5145 µm (green) wavelengths. These two colored beams are separated in the optical system and subsequently emitted as three beams; a blue beam, a green beam, and a 50-50 mixed blue/green (cyan) beam. The three beams are passed through a lens to produce two sets of orthogonal interference fringe patterns in one common focal volume each having a fringe spacing:

$$d_f = \lambda/(2 \sin (\theta/2)) \tag{1}$$

where λ is the wavelength of the incident light beam, and θ is the intersection angle between the cyan beam and either the blue or green beam. A particle passing through the probe volume will scatter light of both colors, blue and green. The light intensity at the photomultiplier is modulated by a frequency, f_D , corresponding to the particular wavelength and fringe spacing and velocity component. This frequency is related to a particle velocity component through

$$f_{D} = U_{i}/d_{f}$$
 (2)

where U is the velocity component perpendicular to the optical axis and in the plane of one set of intersecting colored beams. More detailed descriptions of the particular two color laser Doppler velocimetry system utilized in this experiment including the frequency shift used to prevent flow direction ambiguity may be found in Ref. 12.

Two Component LV Measurements

For the measurements conducted in this study, the optical system was operated in a direct backscattering mode as shown in Fig. 7. The 0.4880 μm wavelength beam was used to measure the streamwise or axial velocty

component, U. The 0.5145 µm wavelength beam was used to measure (a) the azimuthal velocity component, W, when the probe volume was moved horizontally across the stream and (b) the radial velocity component, V, when the probe volume was moved vertically. A Bragg cell was used for both velocity components to eliminate the flow direction ambiguity. This optical subsystem provided signal-to-noise ratios greater than 20 except near the test section walls. For the measurements made in this study, the nominal value of the beam intersection angle, 0, was 9.52 deg. The laser beam dialeter was 1.25 mm and the beam separation at the 1.94:1 beam expander output lens was 53.5 mm. A 310 mm focal length achromatic lens was used to focus the beams. With these optical system parameters, the LV probe volume was calculated to have dimensions of 0.08 mm diameter, 1.01 mm length and contained 28 fringes.

Besides the sending and receiving optical subsystem, each LV system contains other components or subsystems which perform specific functions in the flow measurement. These usually include: (1) a scattering particle generator or seeder, (2) a traverse system to position the probe volume, (3) signal processors, and (4) a data handling subsystem. For the experiments performed for this study, the particles naturally occurring in the city water supply proved adequate as LV seeds. As indicated in Fig. 7, the traverse system consisted of a milling machine base having three directions of motion. The range of motion in the streamwise direction was approximately 240 mm while the ranges in the vertical and cross stream directions were greater than the dimension of the test section. The relative traverse position accuracy of this traverse system was approximately 0.1 mm.

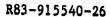
Laser Doppler velocimeter (LDV) signal processors amplify and filter the signals from the multiplier tubes, validate the Doppler frequency samples, and finally compute the Doppler period which is the reciprocal of the Doppler frequency. The SCIMETRICS Model 800A signal processors used in this study measured the elapsed time for 8 Doppler cycles and recorded the pulses from a 125 MHz crystal during the 8 cycle period. The processor also measured and recorded pulses for 4 and 5 Doppler cycles, and compared them with the 8 cycle result to ensure that the LDV signal was a valid one-particle signal. The integer number transmitted to the data handling system is the period of the Doppler frequency in nanoseconds. Two signal processors were used in this study (one for each colored light signal).

Once the LDV signals were processed and accepted, a microcomputer data handling system was used to acquire, store and reduce the data. This system consisted of (1) a data handling interface (constructed in-house), (2) a DEC PDP 10/11 minicomputer with a dual disk operating system, (3) a DEC Laboratory Peripheral System (LPS) with an analog to digital (A/D) signal converter, and (4) a DEC writer III teletype printer. The LDV Data Handling Interface was used to accept only those data points for which the two velocity components were obtained within a period of time of 1 msec. This time period was considered appropriate for the probe volume length of

(1)

approximately 1 mm which was used in this study and for typical velocities of 1 m/sec. Data acquisition rate tests conducted under this criteria indicated that almost all of the sets of two component velocity data were obtained from a single particle moving through the probe volume. A detailed listing of the equipment employed for the two velocity component LV measurements is presented in Table I.

Combined LV/LIF Measurements


The tracer dye used for the LV/LIF measurements was made from fluorescein disodium salt (C₂₀H₁₀O₅Na₂). This dye is used extensively for water pollution studies and is available from chemical supply houses in powder form. Absorption and emission spectra data for fluorescein dye can be obtained from Ref. 13. A liquid dye concentrate was produced by dissolving 2.5 gms of dye powder in 1 liter of water to which was added 1 tablespoon of alcohol in order to stabilize the solution. A dilute solution of dye made by uniformly diluting 1 ml of concentrate with 3.5 liter of water was mixed "inline" with the inner jet fluid in the ratio of 1 part dilute solution to 760 parts water. Any variation in dye concentrations at the inner jet inlet location can be attributed to this last mixing process.

The 0.4880 µm wavelength beam of the argon ion laser was used in the LV/LIF experiment both to induce fluorescence of the fluorescein dye for the LIF measurement and to scatter light from particles for the LV measurements. Fluctuations in the laser beam intensity were monitored in bench tests to determine power fluctuations. The peak to peak power drift over a 20 minute period was less than 0.5 percent. The signal from the photomultiplier was filtered with a 2KHz low pass filter to remove the shot noise associated with photomultiplier tubes. The 2KHz filtering was compatible with the typical velocity of 1 m/sec and probe volume length of 1 mm. The current signal was converted to a voltage, amplified and then processed through an A/D voltage converter each time an acceptable LV signal was obtained. The LV and LIF data were stored as pairs along with the data acquisition time by the Data Handling subsystem. A list of additional equipment used for the LV/LIF measurements is also presented in Table I.

Swirler Design Evaluation

Before conducting the flow visualization tests and the detailed mass and momentum turbulent transport measurements, a short study was conducted to evalute two swirlers designed for use in this program. The eight-bladed swirlers had blade shapes which are typical of that used in gas turbines. The first swirler was designed for a free vortex flow with a 33 deg swirl angle at the mean annulus radius. This swirler produced a flow which appeared to separate at the inner tube wall and was deemed unsatisfactory for this program. The second swirler blade shape was designed to produce a

30 deg-mean-angle, free-vortex tangential velocity distribution with a uniform axial velocity profile. The second swirler produced a swirling annular stream which did not separate from the inner tube wall upstream of the inlet plane. In general, the performance of the second swirler was satisfactory and the resulting flow patterns were the type desired for this study. Therefore, the second swirler was used for the detailed mass and momentum turbulent transport measurements and flow visualization tests. A detailed description of this swirler is presented in Fig. 9.

FLOW VISUALIZATION RESULTS

The present study was conducted to obtain a data base that can be used to evaluate transport models developed for axisymmetric flow computational procedures. Since the transport models are based on time-independent statistics, it is important that the experimental data used to evaluate the models be obtained from statistically steady or stationary flows. Also, good axisymmetric flow characteristics are required because data from the same radial location are obtained at several azimuthal locations. Therefore, flow visualization studies were conducted before data acquisition was initiated to determine if the flow was symmetric and statistically stationary. The results of the flow visualization studies were also used to determine the scale of the turbulent structure of the flow within the test section. The structure and scale of the turbulent eddies was deduced from the interface between regions of high and low dye concentration recorded on high speed motion pictures.

Flow visualization experiments with swirling flow in the annular stream were conducted for the following five flow conditions:

Flow	Mean Axial Velocity, m/s		Flow Rate, gpm		
Condition	Inner Jet, U	Annular Jet, \overline{U}_a	Inner Jet	Annular Je	t
1.	0.52	1.66	6.2	52.8	
2	0.27	1.66	3.2	52.8	
3	2.08	1.66	24.6	52.8	
4 .	0.94	1.51.	11.1	48.0	
5	0 . 94	2.87	11.1	94.8	

These flow conditions are identical to those used in the experiments with nonswirling flow in both the inner and annular streams (Ref. 7).

High speed motion pictures, real-time motion pictures, and fast-action $(1/1000~{\rm sec})$ 35 mm slides were obtained of the flow at selected locations in the r-z and r- θ planes. One set of flow visualization tests was conducted with a continuous flow of dye added to the inner jet stream. A second set of tests was conducted with a pulsed flow of dye added to the annular stream to determine (1) the nature of the shear layer between the annular stream and the annular recirculation region, and (2) the amount of coupling between the large eddy structure in the inner/annular streams and in the annular stream/annular recirculation shear layers.

General features of the flow field observed for all the flow conditions except Flow Condition 3 are shown in the sketch in Fig. 1. Five distinct flow regions were observed in the flow field. Four of the

regions were also observed in the flow field for the nonswirling coaxial streams which is also sketched in Fig. 1. They included: (1) a wake region between the inner and annular streams a short distance downstream of the inlet, (2) a large-eddy shear region between the inner and annular streams, (3) an annular recirculation zone adjacent to the inlet plane, and (4) a reattachment region downstream of the annular recirculation zone. As shown in Fig. 1, a large recirculation region along the centerline was also observed for the swirling coaxial streams. The characteristics of Flow Condition 1, that condition selected for the detailed data acquisition are described in the following paragraphs. This discussion will also be included in Appendix I where the characteristics of the other flow conditions will be described.

Photographs taken for Flow Condition 1 in both the r-z plane and at selected axial locations in the r-0 plane are presented in Fig. 10. The photographs at the top of Fig. 10 are representative of the flow characteristics as seen in the r-z plane when dye is injected both in the inner stream and in the annular stream. The photograph taken when dye is injected into the inner stream (top left) shows that a high inner jet stream concentration persists for an axial distance of approximately 50 mm. In the photograph taken when dye is injected into the annular stream (top right), dye has been entrained near the centerline between an axial distance of approximately 60 mm to 170 mm indicating the presence of a recirculation cell near the centerline. The existence of this recirculation cell became more apparent in the high-speed films and appeared to extend to almost 150 mm. Both photographs show large-scale eddy structure in the shear layer between the jets starting at axial distances of approximately 30 mm and extending downstream to at least 175 mm. The scale of these eddies at z = 50 mm is more than half the inner jet diameter of 30 mm. Although the eddy sizes are large, the eddy structure did not appear to be periodic or symmetric. When dye is injected into the annular stream, the annular recirculation region adjacent to the test section inlet plane and the attachment region downstream of this annular recirculation zone are clearly defined. The length of this annular recirculation cell is approximately 50 mm which is about 1/3 the length observed with nonswirling flow for the same flow condition.

The photographs taken of dye in the r- θ plane at z = 25 mm shows the radial scale (\approx 6 mm) of the eddy structure at the upstream end of the shear region. At z = 51 mm, the scale of the large eddy structure has increased significantly (\sim 15 to 20 mm). The scale does not appear to increase appreciably from z = 100 mm to z = 200 mm. As shown by the photographs in both the r-z and r- θ planes, the large eddy structure is not axisymmetric or azimuthally periodic for z > 50 mm.

Photographs taken at selected axial locations downstream of the test section inlet with dye injected in the annular stream are shown in Fig. 11. These photographs show the structure of the eddies in the $r-\theta$ plane. At

R83-915540-26

z=13 mm, the flow on both the ID and OD of the annular stream show small scale structure with the type of wall eddies expected in an annular duct. At z=25 mm, the scale of the eddies in the annular jet/inner jet interface increased to 6 to 20 mm. Within the recirculation cell (38 mm < z < 180 mm) the scale of the eddies varied from 5 to 25 mm or up to 20 percent of the test section duct diameter. Downstream of the recirculation cell (z > 180 mm), the flow initially had large lobes (e.g., z=203 mm) which evolved into a vortex swirl pattern (z=406 mm). There was little radial mixing downstream of the recirculation cell.

The high speed motion pictures also provided insight into the mixing process and showed two major mixing regions: (1) at the interface between the inner jet and the centerline recirculation zone (z=30 to 60 mm) and (2) in the interface between the inner jet/annular jet streams (30 mm < z < 90 mm and 0.3 < r/R < 1.0). The mixing at the inner stream/recirculation cell interface diluted the inner jet concentration and the resulting mixture of fluid from the recirculation cell and the inner jet was entrained by the swirling annular stream.

(1)

FOREWORD TO PRESENTATION OF RESULTS

The use of computerized data acquisition, storage, reduction and analysis techniques permitted numerous quantities to be determined from the data obtained in this study in addition to the mean and fluctuating velocity components and concentrations usually obtained. These included (1) parameters which can be used to characterize the probability density functions of the velocity components, the concentrations, the mass transport rates and the momentum transport rates and (2) the various correlation coefficients for the transport processes.

The determination of all possible parameters and correlations obtainable from the experimental data was beyond the scope of this study. However, the most universally used quantities have been calculated and are included in this report. The parameters presented include the mean value and three central moments of the velocity and concentration probability or flatness factor), the mean value and three central moments of the mass and momentum turbulent transport rate probability density functions, and the correlation coefficients for the mass and momentum turbulent transport

The data point sets which are presented in this report were obtained for Flow Condition 1, described in the flow visualization section, and consist of single point measurements which were usually made at a fixed axial location over a range of radial locations. A data acquisition run number was assigned to each group of single point measurements. A new run number was assigned to each data point set each time a change in axial location or change in measured parameter was made; i.e., velocity component or concentration. The number of velocity/velocity or velocity/concentration data pairs which were acquired during each single point measurement was either 250, 500, or 1000 depending upon the number of particles traversing the probe volume. During data acquisition, all data was stored on floppy disks. This data was subsequently reduced to obtain the calculated parameters listed in the previous paragraph. The number of data pairs actually used in the data reduction was usually less than the 250, 500 or 1000 data pairs acquired because data pairs were eliminated during data reduction whenever spurious data was encountered. Spurious data was defined as data noncontiguous to and outside of the 3σ region of the probability density functions and was believed to occur when the laser velocimeter signal processor passed "bad" data because multiple or very large particles passed through the probe volume or data was taken in regions of low signal-to-noise ratio.

All the calculated parameters obtained for each data acquisition run are presented in this report in tabular form. Most of the results are also presented in graphical form to aid in the discussion of the results. A

R83-915540-26

listing of the run numbers from which data was utilized for the tables and figures presented in this report is presented in Table II. A listing of numbers assigned to the figures on which results are displayed in this report is presented in Table III. The tabulated parameters for each data point set are tabulated in Tables IV-XX where the term XX denotes the run number.

The results are presented and discussed in the following order. The mean and fluctuating velocity and concentration results are presented first, the turbulent mass and momentum transport rates and correlations second, the higher moments of velocity and concentrations, and the higher moments of the turbulent transport rates are presented in later sections.

R83-915540-26

DISCUSSION OF MEAN AND FLUCTUATING VELOCITY AND CONCENTRATION RESULTS

Velocity Results

Mean and fluctuating velocity profiles were obtained at nine axial stations as part of both the mass and momentum turbulent transport measurements. Consequently, each velocity profile is comprised of data obtained in two to four radial surveys (two or more runs) through the center of the test section. The coordinate system employed for this study is presented in Fig. 4. The results will be discussed in relation to the shear regions shown in Fig. 1 and will be compared with the results of the study made for nonswirling coaxial jets presented in Ref. 7.

Mean Axial Velocity

The mean axial velocity profile along the centerline of the test. section is shown in Fig. 12 and is compared with the profile obtained for the nonswirling flow. As can be seen, the velocity profile for the swirling flow is significantly different from that observed with the nonswirling flow. For the nonswirling flow, the centerline velocity was (1) initially decreased as the inner jet fluid momentum is transported into the wake between the inner and annular streams, (2) increased as the inner jet fluid is accelerated by the annular jet until z = 200 mm, and (3) finally decreased as the duct velocity profile begins to approach that for fully developed duct flow. For the swirling flow, the velocity along the centerline (1) decreased rapidly, (2) passed through zero at z = 40 mm, (3) remained negative until approximately z = 167 mm and (4) gradually increased to the average value for fully developed duct flow. The two stagnation points at z = 40 mm and z = 167 mm mark the extent of a recirculation zone near the centerline of the test section. The length of this zone, 127 mm, agrees with the length observed in the flow visualization tests for this flow condition.

The mean axial velocity profiles are presented in Fig. 13. The velocity profile at the measurement location closest to the inlet, $z=5\,\mathrm{mm}$ was similar to that observed with the nonswirling flow for $z=13\,\mathrm{mm}$. For both cases, the peak velocity in the inner jet was approximately one-half the peak velocity in the annular jet and there was a wake region in the vicinity of r/R=0.25, the radial location of the thin wall which separates the inner and annular jets.

For the horizontal traverses, the shaded symbols shown in the figure were obtained on the side of the centerline adjacent to the LV optics while the open symbols were obtained on the far side. For the vertical traverses, the open symbols were obtained from the upper half of the traverse and the shaded symbols were obtained from the lower half. The velocity profiles are axisymmetric since data taken on either side of the

centerline generally fell on top of one another. However, there is some discrepancy in the annular region for $z=5\,\mathrm{mm}$. This discrepancy may be attributed to the swirl vane wakes and the secondary flow which forms adjacent to the swirl vanes and persists in the flow for a short distance downstream from the test section entrance. This behavior will be discussed more fully later (Appendix II) when the results are presented of azimuthal and radial traverses of the flow field a short distance ($z=5\,\mathrm{mm}$) downstream of the trailing edge of the swirler.

The changes in the axial velocity profiles from $z=5\,$ mm to succesive downstream locations document the development of the various shear and recirculation regions within the test section. The velocity of the inner jet decreased with axial distance and became negative indicating a reversal of flow near the centerline region. Note at $z=25\,$ mm, the velocities were negative in the wake region at 0.18 < r/R < 0.31 indicating an "s" shaped path for the fluid in this region. The flow visualization photographs and motion pictures showed significant mixing in this region. A second flow reversal in this region occurred between $z=152\,$ mm and $z=203\,$ mm after which the velocity gradually increased and flattened out throughout the rest of the duct length.

Negative axial velocities near the peripheral wall were also observed for axial locations up through z = 51 mm indicating back flow or a recirculation region near the outside wall. Note that the peak negative velocity near the wall was approximately 0.65 m/s and was measured at an axial location of z = 51 mm. This negative velocity is approximately 47 percent of the peak streamwise axial velocity at this location and is almost three times the percentage obtained for the nonswirling case. Also, the downstream end of this outside wall recirculation zone is located between z = 51 and z = 102 mm whereas the downstream end of the recirculation region for the nonswirling case was located at z = 254 mm. Therefore, the recirculating zone near the outside wall is shorter for the swirling case and the recirculating flow within the zone is stronger. One other difference which should be noted is that once reattachment of the annular jet occurred the axial velocity profile tended to flatten with momentum transport from the outside inward for the swirling flow whereas it tended to flatten with momentum transport from the inside outward for the nonswirling flow.

Mean Radial Velocity

The profiles of the mean radial velocity are presented in Fig. 14. These profiles were generally axisymmetric except in the annular region at an axial loction of 5 mm. This behavior has been attributed to swirl vane wakes and/or secondary flows which form adjacent to the swirl vanes and persist in the flow for a short distance downstream of the test section inlet (see Appendix II). The flow showed significant radially outward movement (positive velocities) for z < 51 mm. At z = 51 mm, the adial

(1)

velocity is approximately 75 percent of the axial velocity indicating that the flow was moving outward at an angle of approximately 35 degrees. At z=25 mm, there was radially inward movement of the flow near the wall r/R > 0.7 again indicating the presence of the recirculation zone which was observed in the flow visualization tests and which was also indicated by the negative axial velocities at this location. Between z=51 and z=100 mm, the flow attached to the wall and was directed radially inward as the flow was deflected by the wall. The radial velocity profile flattened out and approached zero as the duct flow became fully developed (z>305 mm).

Mean Azimuthal Velocity

The mean azimuthal velocity profiles are presented in Fig. 15. The azimuthal profiles were generally axisymmetric and well behaved. However, one anomaly occurred in the velocity profile near the inlet ($z=5\,\mathrm{mm}$) where the velocity profile on one side of the centerline 0.4 < r/R < 0.5, was greater than on the other side. Similar behavior was also noted in the axial and radial profiles for this location (see Figs. 13 and 14) and has been attributed to swirl vane wakes and/or secondary flows in the vane passage (Appendix II).

The swirling flow azimuthal velocity profile near the entrance to the test section was as expected from the swirler design characteristics. There was no swirl in the inner jet region and the annular profile was essentially that which would be predicted from the swirler design. The azimuthal velocity decreased over the first 51 mm after which an essentially uniform profile was maintained throughout the remaining length of duct.

Fluctuating Velocities

Fluctuating axial, radial, and azimuthal velocity profiles are presented in Figs. 16, 17 and 18 respectively. The profiles for the swirling jets were similar to those observed for the nonswirling jets in that they could be related to the developing shear layers. Near the entrance to the test section (z = 5 mm), the peak fluctuating velocities occurred in the wake region separating the inner and annular flows (r/R) = 0.25 and in the shear layer outside the annular jet $(r/R_0 = 0.55)$. The intensities of the fluctuating velocities increased and decreased with the development of the shear layers (1) between the inner and annular jets, (2) between the annular jet and the recirculation zone near the outside wall and (3) in thereattachment region. The magnitude of the fluctuations were generally greater for the swirling flow than that for the nonswirling flows. For the swirling flow, the more vigorous fluctuations occurred within the first 51 mm while the fluctuations increased to z = 152 mm for the nonswirling flows. For the swirling flow, the fluctuations dampened relatively rapidly between 51 mm and 102 mm which might be attributed to the stabilizing

effect of the uniform azimuthal velocity profile. The fluctuating radial and azimuthal velocity profiles showed trends similar to the axial profiles but the intensity of the axial velocity fluctuation was generally greater. As the local shear rate decreased (z > 152 mm), the ratios of fluctuation, v'/u' and w'/u' tended toward 1.0. However, for those axial locations where the fluctuations were more intense, the axial fluctuations were 1.5 to 2 times greater than either the radial or azimuthal fluctuations indicating nonisotropic turbulence.

Concentration Results

For the concentration measurements, a small amount of fluorescein dye was added to the inner jet fluid. As the dye in the inner stream mixed with the annular stream, the local concentration of inner jet fluid was determined by measuring the intensity of light emitted by the fluorescing dye. The light intensity is proportional to the concentration of dye in the LV probe volume. The local concentration in the fluid, f, was defined to be the ratio of light emitted locally to the light emitted at the centerline locations at an axial location of 13 mm where $\bar{f} = 1.0$ by definition. The location z = 13 mm and $r/R_0 = 0$ was chosen as a reference location because: (1) optical interference with the upstream walls occurred in the light collection system at locations closer to test section inlet and (2) the inner jet fluid had not begun to mix at this location. During a particular run, the light intensity at the reference location was measured at the start of the run, after each set of approximately 5 data points had been taken, and again at the end of the run. In this way, any variation in the light emitted at the baseline location could be accounted for during the course of the run. In the discussion of the experimental results which follows, the symbol "f" and/or the term "concentration" refer to the ratio of the light emitted locally to the light emitted at the baseline location.

Mean Concentration

The axial variation of the concentration along the test section centerline is presented in Fig. 19 along with the variation obtained for the non-swirling flow (Ref. 7). Again, the results presented in this figure point out the significant differences between the swirling and nonswirling flows. For the swirling flow, the mean centerline concentration decreased rapidly from the reference measurement location (z = 13 mm) and approached the mass averaged flow concentration level of z = 13 mm and approached the mass averaged flow, the concentration along the centerline decreased slowly to 75 mm and then fairly rapidly from z = 100 mm to z = 200 mm and finally approached the mass averaged flow concentration level at z = 356 mm. Mixing along the centerline of the test section for swirling flow was therefore completed in one-third the length required for nonswirling flows.

(+)

The mean concentration profiles at various axial stations are presented in Fig. 20. At an axial location near the entrance to the test section (z=13 mm), the concentration profile shows the expected large concentration gradient between the inner jet and the annular jet. Note that at z=25 mm and 0.18 < r/R < 0.31, the location where a recirculation zone is indicated by the mean axial velocity profile (Fig. 13), the concentration profile varies from f=0.8 to 0.3. The concentration profile rapidly flattened out with axial distance until z=102 mm where the concentration across the duct became essentially equal to the average duct concentration of f=0.104 for the remaining length of test section. The results shown in Fig. 20 indicate that the concentration profiles were reasonably axisymmetric and repeatable.

Fluctuating Concentrations

The concentration fluctuations, f', are presented in Fig. 21. At an axial location near the entrance to the test section (z=13 mm), the peak concentration fluctuation occurred in the interface region between the inner and annular jets where a large concentration gradient exists. At z=25 mm, the peak concentration fluctuation still occurred in this interface region (0.15 < r/R < 0.35) but increased activity also occurred along the centerline, r/R = 0.0. The fluctuations in the centerline region continued to increase between z=25 mm and z=51 mm with peak activity shifting toward the centerline. There was a rapid decrease in activity between z=51 mm and z=102 mm as the fluctuations dampened out from inside to outside. Between z=102 mm and z=203 mm the fluctuation profiles were essentially flat with only slight activity near the outside wall region. The fluctuation for swirling flow were essentially dampened out in approximately one—third the length required for the nonswirling flow.

(1)

DISCUSSION OF TURBULENT TRANSPORT RESULTS

Momentum Transport

Profiles of the momentum turbulent transport rates and correlation coefficients obtained for the three measurement planes are presented in Figs. 22 through 27. The discussion of these profiles will be related to the shear regions presented in Fig. 1 and the velocity profiles presented in Fig. 13 through 15.

Radial-Axial Plane (r-z)

The momentum turbulent transport rate-distributions obtained in the r-z plane are presented in Fig. 22. This turbulent transport, uv, is related to the strain rate: $\partial U/\partial r + \partial V/\partial z$. The momentum turbulent transport rates were either positive (outward) or negative (inward) at various locations in the flow and were consistent with the local velocity gradients shown in Figs. 13 and 14. Near the entrance of the test section, z=5 mm, the momentum turbulent transport was positive for $r/R_{o}<0.2$ (the extent of the inner jet region) and remained positive up through an axial location of z = 25 mm. This momentum flux can be attributed to the shear of the inner jet fluid on the wake region downstream of the interface between the inner and annular jets. At z = 5 nm, and for $0.2 < r/R_0 < 0.4$, the momentum flux was negative because momentum was being transported from the annular jet fluid into the wake region. Near $r/R_{\lambda} = 0.5$, the momentum flux was positive which can be attributed to the shear layer which develops between the annular jet and the recirculation zone near the outside wall. At the axial location of z = 25 mm, the momentum turbulent transport rates had approximately doubled.

The flow visualization tests and the axial velocity measurements indicated that a recirculation zone existed near the test section centerline for axial locations 40 mm < z < 167 mm. The results shown in Fig. 22 indicate that there is little momentum transport near the centerline, r/R < 0.4, for axial locations, z = 51 mm and z = 102 mm, the upstream end of the centerline recirculation cell. There was a weak negative momentum flux for r/R_{c} < 0.4 at z = 152 mm which is close to the downstream edge of the centerline recirculation zone. The momentum turbulent transport rate near the outside wall, r/R > 0.8 was still positive at z = 51 mm but became essentially zero at $z^0 = 102$ mm indicating that the end of the recirculation zone near the outside wall is located between z = 51 mm and z = 102 mm which is consistent with the results of the axial and radial velocity measurements and the flow visualization tests. At axial locations, 51 mm < z < 203 mm, the momentum turbulent transport rate was negative (consistent with the axial velocity gradient) and was essentially zero for z > 305 mm. In comparison, the momentum transport in the r-z plane for nonswirling flow was generally positive and significant transport was still observed at

an axial location z=305 mm. The peak rates for both swirling and nonswirling flow were of the same order of magnitude ($0.6 \text{ m}^2/\text{s}^2$) but the peak for the swirling flow occurred at an axial location one-fifth to one-fourth of that observed for the nonswirling flow.

The correlation coefficients, R , obtained for the momentum turbulent transport data are presented in Fig. 23. As can be seen from the figure, the correlation coefficients generally followed the same trend as the momentum turbulent transport rate profiles. Peak correlation coefficients occurred at essentially the same locations where the peak transport rates occurred. The absolute values of the peak momentum transport correlation coefficients were between 0.35 and 0.50 which are in the range previously measured for turbulent free shear momentum transport (Ref. 14). Note that the momentum turbulent transport coefficients for z=51 mm and 0.4 < r/R < 0.6 are -0.25 to -0.30 rather than the values of 0.4 to 0.5 measured in other high shear regions. Note also that for $z \ge 305$ mm the correlation coefficients were low and scattered about zero.

Axial-Azimuthal Plane $(z-\theta)$

The axial-azimuthal momentum turbulent transport rates obtained are plotted in Fig. 24. This turbulent transport is related to the strain rate $(1/r) \partial U/\partial \theta + \partial W/\partial z$. For axisymmetric flow, $\partial U/\partial \theta$, is zero. The transport rates in this measurement plane were consistent with the trends shown with the corresponding velocity profiles but the peak rates were about half of those observed in the r-z plane. The momentum turbulent transport rate was generally positive for z < 102 mm especially in the annular jet region, 0.25 < r/R < 0.60. For 102 mm < z < 203 mm, the momentum transport rate was positive near the centerline region, r/R < 0.4 and negative near the outside wall, r/R > 0.6. The momentum turbulent transport rate in the z- θ measurement plane became essentially zero for z > 305 mm and r/R > 0.2. There was a weak negative transport close to the centerline of the test section, r/R < 0.2.

The momentum transport correlation coefficient, R, obtained in this measurement plane is shown in Fig. 25. Again, the correlation coefficient profiles generally followed the same trend as the momentum transport rate profiles. However, the peak values were about half those obtained for the r-z plane. There appears to be more scatter in the R correlation coefficients than those for R. The flow visualization motion pictures showed more low frequency "wandering" of the flow inside the downstream of the central recirculation zone that may cause this scatter in R.

Radial-Azimuthal Plane (r-θ)

The momentum turbulent transport rates in the radial-azimuthal plane were obtained by aligning the laser beams in the test section parallel with the axis of symmetry. For these measurements, the LV laser beams were

passed through a 1200 mm focal length lens and entered the test section through a window at the downstream end of the test section. Light from the scattering particles in the probe volume was collected by a set of receiving optics which was aligned perpendicular to the test section axis of symmetry. With this arrangement, data was obtained at three axial locations: z = 25 mm (Runs 47, 48 and 49), z = 50 mm (Runs 46, 50, 51, 52 and 53) and z = 102 mm (Runs 54, 55, 56). Runs 46, 47, 50, 51 and 54 were obtained with the LV optical axis parallel to the test section axis of symmetry. Because of some optical axis constraints with this particular optical orientation, data could only be obtained in the region r/R < 0.5. In order to obtain data in the region $r/R_{\lambda} > 0.5$, the optical axis tilted upward or downward by approximately one degree. This tilted optical orientation allowed data to be obtained closer to the outer wall, Runs 48, 49, 52, 53, 55 and 56. This data should be corrected using the result of the momentum turbulent transport data obtained for the r-z plane. However, since this correction is small (estimated to be within 2 percent of the peak turbulent transport rate measured) and since the details (i.e., higher moments of the vw probability density function would not be available with the correction, uncorrected data is presented herein. It is believed that the uncorrected data provide an adequate representation of the momentum turbulent transport process in the r-0 plane.

The momentum turbulent transport rates obtained for the r- θ measurement plane are presented in FIg. 26. This turbulent transport is usually related to the strain rate $(1/r) \ \partial V/\partial \theta + \partial W/\partial r - W/r$. For axisymmetric flow, the azimuthal variation of V is zero. This data was obtained for three axial locations, z=25, 51 and 102 mm. At z=25 mm, there was a negative transport rate in the interface region between the inner and annular jets and a positive transport rate in the shear region between the annular jet and the recirculation zone near the outside wall. The results obtained for the r- θ plane were similar to those obtained for the r-z and z- θ planes in that peak momentum transport occurred at an axial location z=25 mm and the rate tended to zero with increasing axial distance. The peak rate observed for the r- θ plane was approximately equal to the peak obtained for the z- θ plane (α 0.3 m²/s²).

The profiles of the correlation coefficient obtained in this plane, R are shown in Fig. 27 and generally followed the same trends as the momentum transport rate. The peak correlation coefficient obtained (R = 0.25) was approximately equal to the correlation coefficient obtained for the z-0 plane and was about one-half of that obtained for the r-z plane.

Summary Comments

For this flow condition with swirl angles of 25 to 40 degrees in the annular stream, the principal momentum turbulent transport was in the r-z plane, uv, and was caused by the axial velocity gradients. The peak transport rates were approximately the same $(0.06 \text{ m}^2/\text{s}^2)$ as for the

 \odot

nonswirling flow condition but occurred nearer the inlet ($z=25 \, \mathrm{mm}$) than for the nonswirling flow condition ($z=150 \, \mathrm{and} \, 205 \, \mathrm{mm}$). The correlation coefficients for the momentum turbulent transport in the r-z plane were greater than those in the other two planes. This result is compatible with assumptions in the turbulent transport theory regarding the "return to isotropy" for eddy dissipation of energy.

Mass Transport

The mass turbulent transport rate profiles were obtained for the three measurement directions. These transport rates are generally associated with the gradients of the mean concentration profiles (Fig. 20). The discussion of the mass turbulent transport will be related to these concentration profiles, to the shear regions shown in Fig. 1 and to the flow visualization results.

Radial Direction

The radial mass turbulent transport rate profiles, vf, which are shown in Fig. 28 indicate that radial transport occurred at axial locations z =13, 25 and 50 mm and essentially no mass turbulent transport occurred between z = 102 mm through z = 203 mm. The peak rates for z = 13 mm and 25 mm occurred at the radial location, r/R = 0.25 which corresponds to the location of the interface between the inner jet and annular jet. At z=25mm, the peak transport rate occurred for $0.18 < r/R_{\odot} < 0.3$ where the axial velocities were negative. At 51 mm, the turbulent transport rate data appear to be scattered about zero especially near the centerline region. According to the flow visualization results and the axial velocity profiles, the axial location of z = 51 mm is near the upstream end of the centerline recirculation region where the flow may not be axisymmetric and thus may account for the data scatter. The peak fluctuating radial. velocities for swirling flow were approximately 60 percent greater than the peak obtained for nonswirling flow and therefore higher mass turbulent transport rates should be expected for swirling flow. However, the peak radial transport rate of $\overline{vf} = 0.018$ m/s which was obtained at z = 25 mm and $r/R_0 = 0.26$ is approximtely equal to the peak value obtained for nonswirling flow (Ref. 9). The peak for nonswirling flow also occurred in the interface region (0.20 < r/R < 0.25) but was obtained much farther downstream (102 mm < z < 151 mm). The peak values were relatively low although they occurred at locations where the radial concentration gradients were the highest in the flow field (see Fig. 22). For the swirling flow condition, the mean radial velocities were an appreciable fraction (20 to 70 percent) of the local axial velocity. Thus there was more convection of the inner jet fluid radially outward than occurred for the nonswirling flow condition.

R83-915540-26

The correlation coefficient, $R_{\rm vf}$, profiles which are presented in Fig. 29 generally followed the trends of the mass transport rates. The peak correlation coefficient occurred at the same location as the peak mass transport rate (z=25 mm, r/R=0.26) but its value of $R_{\rm vf}=0.31$ is approximately half the correlation coefficients obtained for the nonswirling flow.

Axial Direction

The axial mass turbulent transport rate, uf, profiles are presented in Fig. 30. The greatest axial mass transport (0.25 m/s $< \overline{uf} < 0.55 \text{ m/s}$) occurred near the upstream end of the centerline recirculation zone $(r/R_0 < 0)$ 0.3 and 25 mm < z < 51 mm). In this region the mean axial velocity was negative. No appreciable axial mass transport occurred for z > 102 mm. There is a significant difference in the axial mass turbulent transport rates between the nonswirling and swirling flows. For nonswirling flow, negative mass turbulent transport rates were obtained in those regions where the inner stream concentration was decreasing with axial location which indicates a counter-gradient mass transfer. For swirling flow, the axial mass turbulent transport rates were positive (gradient mass. transfer). The peak axial mass turbulent transfer rate for the swirling flow (0.55 m/s) was higher than the peak obtaned for non-swirling flow (-0.35 m/s). The mass transport in the axial direction for swirling flow was essentially completed within z = 102 mm whereas the mass transport for nonswirling flow was not completed until z = 305 mm. The axial mass turbulent transport rates were higher than the radial mass transport rates even though the peak radial concentration gradients were approximately seven times greater than the peak axial concentration gradient.

The correlation coefficient R profiles presented in Fig. 31 show the development of the axial mass transfer process more clearly where the mass transport rates are small. At z = 13 mm and z = 25 mm, the axial mass transport correlation coefficients were generally positive for $r/R_0 < 0.40$ which indicates mass transport in the downstream direction. In the shear region between the annular jet and the recirculation zone near the outside wall, 0.45 < r/R < 0.8, the correlation coefficient was negative for z = 13 mm and $z = 25^{\circ}$ mm indicating mass transfer upstream. Near the upstream end of the centerline recirculation zone (z < 51 mm), the correlation coefficient was positive near the centerline $(r/R_2 < 0.4)$. At the downstream end of the recirculation zone, (102 mm < z < 152 mm), the correlation coefficient was negative. The correlation coefficient is generally positive near the peripheral wall (r/R > 0.8). Although the peak axial mass turbulent transport rate for swirling flow was greater than that for nonswirling flow, the correlation coefficients for swirling flow were less than that for nonswirling flow.

Azimuthal Direction

The azimuthal mass turbulent transport rate, wf, and the corresponding correlation coefficient, R, profiles are presented in Figs. 32 and 33, respectively. The azimuthal mass turbulent transport rates shown in Fig. 32 were small compared to the rates in the axial and radial direction. At z=13 mm, there was a small negative rate in the interface region between the inner and annular jet streams. This is caused by the preferential turbuent eddy orientation in the interface between the inner and annular streams. The negative value indicates that the inner jet fluid (from the nonswirling inner jet) is rotating at a lower rate than the mean azimuthal velocity. For axial locations, z=25 mm and z=51 mm, there were also variations of the mass transport rate near the centerline region, r/R < 0.4, which can be attributed to coupling between the mass and swirling momentum transport in those regions. For z>102 mm, the azimuthal mass transport was essentially zero.

The correlation coefficient profiles presented in Fig. 33, essentially showed the same trends as the mass transport profiles. There was scatter in the results in and near the ends of the center recirculation region due to asymmetries and wandering of the center of rotation.

Summary Comments

The mass turbulent transport process for the "simple" swirling coaxial flow configuration utilized in this experiment is very complicated. From the data and the flow visualization high speed motion pictures, it appeared that the turbulent transport and mixing occurred in several steps of axial and radial mass turbulent transport coupled with a large radial or mean convection flux. The turbulent transport rates indicated mass flux across streamlines and the decrease in concentration fluctutaions indicated mixing of the fluid toward the molecular level. These processes appear to begin with high concentration fluid from the inner jet diffusing turbulently into fluid from the recirculation cell near the centerline for 25 mm < z < 50 mm. This diluted inner jet fuid ($\overline{f} \approx 0.5$) is convected by the negative axial velocities at z 2 25 mm and 0.2 < r/R < 0.3 to the large eddy shear region at 0.3 < r/R < 0.4 and 25 mm < z < 75 mm. There appeared to be more turbulent transport across the diagonal streamlines (r/R) > 0.3 and < 150 mm) by axial mass turbulent transport than by radial mass turbulent transport. This result may be due to the preferential turbulent structure developed by the shear layer. Additional analysis of the data and comparison with numerical code predictions or results from dimensional analysis (using the equations for turbulent transport) will be required to fully understand this turbulent transport process.

DISCUSSION OF SKEWNESS AND KURTOSIS RESULTS FOR VELOCITY AND CONCENTRATION PROBABILITY DENSITY FUNCTIONS

Although mean and fluctuating velocity and concentration distributions and transport rate distributions are required to evaluate the accuracy of predictions with a given turbulent transport model, they do not provide the insight required to determine where the deficiencies in a turbulent transport model occur. Examination of the probability density function (p.d.f.) for each data set acquired at each location can show if the experimental conditions are compatible with the assumptions in current or proposed models. The experimental techniques and the computer based data acquisition systems employed in this study permitted the examination of these p.d.f.s and the determinations of their skewness and kurtosis parameters used to characterize the degree of asymmetry and flatness respectively of the p.d.f.s. Typical results from this portion of the study are presented in the following sections.

Typical Probability Density Functions

Velocity and concentration p.d.f.s were plotted for data sets obtained at selected radial locations at z = 25 mm from the inlet plane and are presented in Figs. 34 through 37. This axial location was chosen for more detailed analysis of the flow characteristics because the momentum and mass transfer rates are high at this location. These data were obtained as part of the momentum and mass transfer acquisition; consequently velocity p.d.f.s were comprised of data from two or more different runs. The concentration p.d.f.s are comprised of data from the mass transport rate measurement in three directions. The mean quantity, rms variation from the mean, the skewness and the kurtosis tabulated are averages from the number of runs cited in each figure. The data from the runs was plotted to present a composite picture of the p.d.f. at each location.

Axial Velocity

The axial velocity p.d.f.s presented in Fig. 34 showed significant changes with radial location. The p.d.f. at r/R = 0.0 was skewed to the lower velocity region which indicated that on the average, flow at this location was being decelerated axially. At r/R = 0.13, the p.d.f. was approximately symmetric and double peaked. Consequently the kurtosis, K = 2.2, was lower than the Gaussian value, K = 3.0. At r/R = 0.24, the up.d.f. was skewed toward the higher velocities indicating that on the average, fluid at this radius was being accelerated in the shear layer between the jets. At a radius ratio of 0.36, the p.d.f. was more symmetric and had a kurtosis close to that for Gaussian profiles (K = 3.0). At radius ratios of 0.52 and 0.68, the p.d.f.s were again skewed toward lower velocities indicting that the fluid was again being decelerated. The

trends indicated by the p.d.f.s are consistent with the axial velocity profiles shown in Fig. 13.

Radial Velocity

Although the radial velocity p.d.f.s presented in Fig. 35 showed less variation with radial location than the axial p.d.f.s, they did have several distinct features. At radial locations r/R = 0.0 and 0.13, the p.d.f.s were nearly symmetrical, i.e., S = 0.2 and were sharply peaked near V = 0. The p.d.f. at r/R = 0.24 also peaked about zero but had a negative skewness. The tails on each side of the peak cause the kurtosis to be relatively high, i.e., K = 0.0. At the radial location r/R = 0.36, the p.d.f. is skewed toward higher velocities indicating that the fluid in this region was being accelerated. At r/R = 0.52, the p.d.f. is essentially symmetric which is consistent with the radial velocity profile shown in Fig. 14, i.e., the mean radial velocity at this radial location is at the maximum. At r/R = 0.68, the radial velocity is close to zero but the p.d.f. is skewed to higher velocities which indicates that some filaments of fluid with relatively high radial velocity occasionally passed through the probe volume.

Azimuthal Velocity

The azimuthal velocity p.d.f.s which are presented in Fig. 36 show that the fluid had essentially zero velocity for radial locations up to r/R = 0.24 (p.d.f.s peaked near zero). At r/R = 0.36, the p.d.f. has shifted to higher velocities. However, low velocity fluid occasionally passed through the probe volume since the p.d.f. is skewed toward the lower velocities. The p.d.f. at r/R = 0.52 where the velocity reaches a maximum is sharply peaked and nearly symmetric (S = 0.06). At r/R = 0.68, the p.d.f. is skewed toward lower velocities which is consistent with the fact that the fluid is decelerated in this region.

Concentration

The concentration p.d.f.s are presented in Fig. 37 for the axial location z=25 mm. Each of the profiles show unique and rapidly changing features which were characteristic of specific flow regions. The concentration p.d.f.s at r/R=0.0 and 0.52 were obtained from measurements at the inner and outer edges, respectively, of the mean concentration profiles (see Fig. 20). At r/R=0.0, the most probable fluid concentration was near 1.0 with the tail of the p.d.f. skewed toward the lower concentrations. The values of the skewness, S_c , and kurtosis, K_c , were -2.91 and 12.4, respectively. At r/R=0.52, the most probable fluid concentration was near 0.0 with the p.d.f. skewed toward values up to 0.2. The skewness and kurtosis of the p.d.f. at this location were 3.92 and 27.0 respectively. Note the precipitous slope of the concentration p.d.f. at zero concentration which is the shape expected for an ideal seed and

measurement system. The p.d.f.'s at the intermediate radial locations indicate the rapid mixing which is occurring in this region. At r/R_1 = 0.13, the concentration fluctuations were increasing (see Fig. 21) and the mean concentration had decreased slightly (see Fig. 20). The p.d.f. at this location is consistent with this trend in that it is skewed to values of lower concentration indicating low concentration fluid was being mixed ... into the high concentration inner stream. At $r/R_0 = 0.24$, the concentration fluctuations were at the maximum for this axial location and the p.d.f. reflects this result. The p.d.f. is double peaked which indicates that large eddies of high and low concentration existed at this location. The mean concentration value was approximately 0.5 which occurs between the two peaks. At $r/R_{\lambda} = 0.36$, the concentration fluctuations have decreased and the mean concentration has decreased further. The p.d.f. at this location has become more symmetric but was still skewed to higher concentrations which indicates that the mean activity had decreased but high concentration fluid was occasionally being carried into the low concentration region. The p.d.f. at r/R = 0.68 is essentially symmetric and sharply peaked at a value of approximately 0.05 indicating very little concentration fluctuation. The p.d.f.s at higher values of r/R are not shown but were also sharply peaked with the peak near a value of 0.05, the mass flow averaged concentration level within the annular recirculation cell.

Skewness and Kurtosis Distributions

The skewness and kurtosis distributions for the axial, radial and azimuthal velocity p.d.f.s and the mean concentration p.d.f. are presented in Figs. 38 through 45. The skewness, S, is a dimensionless measure of the asymmetry of a p.d.f. If the p.d.f. is symmetric about the origin then the skewness would be zero. A p.d.f. with positive skewness indicates that there are more values of the function in the tail toward the positive side while the negative skewness indicates that there are more values of the function in the tail toward the negative side. The kurtosis, K, is a dimensionless measure of the flatness of the p.d.f. The value of kurtosis is large if the values of the function in the tails of the p.d.f. are relatively large. The kurtosis of a Gaussian p.d.f. profile would be equal to 3.0 while the kurtosis for a square p.d.f. profile would be 1.8.

As will be noted in the discussion which follows, the skewness of the velocity p.d.f.s generally fell within a band of values equal to \pm 2. The kurtosis factors were generally greater than 3.0. On the other hand, skewness factors for the concentration p.d.f.s were as high as \pm 10 with kurtosis factors approaching 100 in some flow regions. It has been shown (Ref. 15) that utilization of Schwarz's inequality, i.e., $(x^2)^2 < x^4 + x^2$ with the definitions for skewness and kurtosis (see Appendix III) leads to the relation

 $K \ge s^2$

(3)

Hence, when the skewness is large in magnitude (of either sign), the kurtosis will be large and positive. As will be seen in the discussion which follows, the kurtosis satisfies this inequality.

Axial Velocity

The skewness profiles, S, for the axial velocity p.d.f.s are presented in Fig. 38. For axial locations 1 102 mm, the fluid was accelerated or decelerated in various flow regions, and the skewness of the p.d.f.s were positive or negative, respectively. At axial locations farther downstream where the velocity profiles became uniform, the skewness tended to scatter about zero. Whenever, the skewness deviated from zero, the kurtosis tended to be greater than 3.0, the value for a Gaussian distribution (Fig. 39).

Analysis of the velocity, skewness and kurtosis profiles indicate that the deviation of the skewness and kurtosis from the values for a Gaussian p.d.f. appeared to be correlated to the local curvature of the axial velocity profile. It appeared that $S_u>0$ whenever $\partial^2 U/\partial r^2>0$ and $S_u<0$ whenever $\partial^2 U/\partial r^2<0$. These results have been explained (Ref. 15) by noting that at a radial location where the mean velocity profile has a local maximum, slower moving fluid will occasionally move by from either side but faster moving fluid would not move by. Similarly, at a radial location where the velocity profile has a local minimum, faster moving fluid will occasionally move by but not slower moving fluid. When the absolute value of the curvature of the velocity profile is high, K > 3.0. When the curvature passes through zero, the kurtosis decreases and the p.d.f. becomes more Gaussian. The magnitude of the deviations from the values for a Gaussian p.d.f. also appeared to be proportional to the

Radial Velocity

The skewness and kurtosis distributions for the radial velocity p.d.f.s are presented in Figs. 40 and 41. The largest variation in skewness occurred at the axial location closest to the entrance of the test section, z=5 mm. For increasing axial location, the skewness profiles became flatter and the values tended to scatter abo. zero. The kurtosis profiles shown, in Fig. 41, were generally higher than the Gaussian value of 3.0. The greatest scatter in the data occurred at z=102 mm in the upstream end of the centerline recirculation region, $r/R_0 < 0.5$.

Azimuthal Velocity

Although the skewness distributions for the azimuthal velocity p.d.f.s

shown in Fig. 42 indicated that there was considerable scatter of the data, the average values of the skewness factor, S, are generally compatible with the local fluid acceleration or deceleration. The kurtosis profile shown in Fig. 43 also exhibited scatter in the data but except for some isolated radial locations near the entrance of the test section, z = 5 mm, and well downstream of the entrance z > 305 mm, the kurtosis values generally averaged between 3.0 and 4.0.

Mean Concentration

The skewness and flatness factor profiles obtained for the mean concentration p.d.f.s are presented in Fig. 44 and 45 and behave as expected in most of the flow regions. In the high concentration region (z = 13 mm and 0.1 < r/R < 0.25), the skewness, S_f , was negative indicating that eddies of low concentration fluid are occasionally passing through the probe volume. For those regions where the concentration gradients were large (z = 13 and 25 mm; 0.2 < r/R < 0.4), the skewness rapidly changed from large negative values to large positive values. Even in the mixed regions, (r/R > 4; f = 0.1), the skewness was greater than zero because some filaments of fluid with relatively high concentration occasionally passed through the probe volume. Farther downstream in the test section, z > 152 mm, the skewness leveled out to essentially zero.

The kurtosis profiles presented in Fig. 45 exhibit similar trends. Very large values of kurtosis, $K_{\rm f} > 100$, occurred in those regions where the concentration gradients are steepest. As the fluid mixing was completed, the kurtosis profile flattened out to an average value of about 4.0.

DISCUSSION OF THE SECOND CENTRAL MOMENT, SKEWNESS AND KURTOSIS RESULTS FOR MOMENTUM AND MASS TURBULENT TRANSPORT PROBABILITY DENSITY FUNCTIONS

Typical Turbulent Transport Rate Probability Density Functions

The probability density functions for the momentum and mass turbulent transport rate data are presented for the axial location, $z=25\,\mathrm{mm}$, which is the same location for which the velocity and concentration p.d.f.s were presented. This location was chosen as typical of the flow region where the mass and momentum turbulent transfer rates are the highest.

Momentum Transport

Typical probability density functions for the momentum transport rates in the r-z, z-0 and r-0 measurement planes are presented in Figs. 46, 47, and 48 respectively. The p.d.f.s are similar in that they all had peaked typical of the shape of momentum turbulent transport rate which is (Ref. 16). The p.d.f.s for the r-0 plane were more sharply peaked than those for the r-z and z-0 planes. All three sets of profiles showed changes in shape occurred at those radial locations where the momentum turbulent transport rates were the highest; i.e., r/R = 0.24, 0.36 and 0.68.

Mass Transport

The probability density functions of the radial mass turbulent transport rates which are presented in Fig. 49 indicate that all of the profiles are sharply peaked near zero. However, the p.d.f.s at 0.13 < r/R < 0.52 are broader indicating increased radial mass transport activity in this region. This trend is consistent with the mass transport rate results presented in Fig. 28 which show that the radial mass transport rates are the highest in this region.

Probability density functions of the axial mass turbulent transport are presented in Fig. 50. The p.d.f.s are similar to the radial mass transport p.d.f.s in that they all peaked around zero. In the regions where the axial mass transport rates were highest, 0.13 < r/R < 0.52, the profiles were flatter and the peak values the lowest.

The probability density functions for the azimuthal turbulent mass transport rates are presented in Fig. 51. They are similar to the radial and axial mass transport p d.f.s in that they are also sharply peaked about zero and are flattest where the transport rate is highest.

4

Typical Momentum Turbulent Transport Results

Radial-Axial Plane (r-z)

The second central moment profiles (or rms fluctuation from the mean) of the momentum turbulent transport in the r-z plane, σ , are presented in Fig. 52. This quantity previously was used to analyze and evaluate the turbulent transport process in boundary layers, e.g., Ref. 17. A comparison of the values of σ with the corresponding values of the momentum transport rate (\overline{uv}) from Fig. 22 show that σ was generally at least a factor of two greater than \overline{uv} . Ratios of \overline{uv} vequal to approximately 3 were previously reported for boundary layers (Ref. 16). The trends shown in Fig. 52 were generally the same as shown in Fig. 22. The σ were generally highest were the momentum transport rates, \overline{uv} , were highest.

Skewness and kurtosis profiles (S and K) for the momentum turbuturbulent transport p.d.f.s obtained in the r-z plane are presented in Fig. 53 and Fig. 54 respectively. The skewness profiles showed the same trends as the momentum turbulent transport rate. The skewness was positive when the momentum transport rate profiles was positive and became negative when the momentum transport rate became negative. For those axial locations where the momentum transport rate became zero, the skewness values tended to scatter about zero.

The kurtosis profiles presented in Fig. 54 showed the trend expected from the skewness profiles. Whenever the skewness was large in magnitude of either sign, the kurtosis was large and positive. However, the low kurtosis values obtained at $z=5\,$ mm, r/R=0.45 indicate deviations from the processes assumed in the simple transport models such as the joint-Gaussian p.d.f. model.

Axial Azimuthal Plane (z-0)

The second central moment profiles of the momentum turbulent transport in the z- θ plane, σ , are presented in Fig. 55. The σ profile generally peaked where the momentum transport rates (uw) peaked but were 2 to 5 times greater in value. As the momentum transport rate dampened to zero, the values of σ also approached zero. The skewness profiles of the p.d.f.s in the z- θ plane which are presented in Figs. 56 generally followed the same trends that were observed for the uw profiles. The skewness was generally positive when the turbulent transport rate was negative. However, many of the fluctuations which occurred in the momentum rate were not observed in the skewness profiles. The kurtosis profiles, K presented in Fig. 57 exhibit a large amount of scatter. However, the kurtosis tended to be large whenever the skewness was large in magnitude.

Radial-Azimuthal Plane (r-0)

The second central moment, skewness and kurtosis profiles for the p.d.f.s obtained in the $r-\theta$ plane are shown in Figs. 58, 59 and 60 respectively. The second central moment σ was at least twice the momentum transport rate wv and generally peaked where the momentum turbulent exhibit the same variations as the momentum rate profiles and the absolute values of skewness were generally less than 4. The kurtosis profiles shown in Fig. 60, followed the same trend as the kurtosis profiles obtained for the p.d.f.s in the r-z and $z-\theta$ planes; namely, the kurtosis was large whenever the skewness was large in magnitude of either sign.

Summary Comments

In general, the second central moments of the momentum turbulent transport rate profiles were well behaved. The radial variation and the axial variations are easy to discern. The variations of skewness and kurtosis for the momentum turbulent transport in the r-z plane, i.e, uv, can also be discerned. However, radial and axial variations for the skewness and kurtosis of the momentum transport in the r-0 and z-0 planes have more scatter especially in the central recirculation region. The result that the ratio of σ /uw and σ /wv were larger than the ratio σ /uv in the high shear regions was probably due to tendency for energy to be transferred from the high intensity u fluctuation to the v and w components.

Typical Mass Turbulent Transport Results

The second central moment, skewness, and kurtosis of the mass turbulent transport p.d.f.s are presented in Figs. 61 through 69. Since the trends observed for each mass transport property was essentially the same for each measurement direction, the discussion of the results for each direction will be presented together.

The second central moment of the turbulent mass transport p.d.f.s are presented in Fig. 61 for the radial direction, in Fig. 64 for the axial direction and in Fig. 67 for the azimuthal direction. The trends show, for all three directions are essentially the same and correspond almost exactly to those observed for the fluctuating concentration profiles (Fig. 21) and generally follow the trends observed in the mass turbulent transport rate profiles. At axial locations z = 13 mm and z = 25 mm, the peak second central moments occurred in the interface region between the inner and annular jets. Increased activity occurred along the centerline, r/R = 0.0, for z = 2.5 mm and this activity continued to increase for z = 51 mm. The second central moments rapidly decreased for z > 51 mm and became essentially flat for z > 152 mm. The peak values of the second central

moments for the radial mass turbulent transfer rates were slightly higher than the peak values for the azimuthal mass transfer rates. The peak second central moment for the axial mass transport is approximately 1.5 times the peak observed for the radial and azimuthal mass transfer. Also, the peak values of the second central moments for all measurement directions were generally higher than the peak mass transport rate for any direction at that measurement location.

The skewness of the mass turbulent transport rate p.d.f.s are shown in Figs. 62, 65 and 68 for the radial, axial and azimuthal directions, respectively. The skewness values deviate from zero where mass transport occurs but no trend consistent with the mass transport profiles is apparent.

The kurtosis profiles of the mass transport p.d.f.s are presented in Fig. 63 for the radial direction, in Fig. 66 for the axial direction and in Fig. 69 for the azimuthal direction. These kurtosis profiles also followed the trends of the kurtosis profiles discussed previously. Whenever the skewness became large in magnitude (of either sign), the kurtosis also became large.

SUMMARY OF RESULTS

Qualitative and quantitative studies were conducted of the flow downstream of swirling coaxial jets discharging into an expanded duct. The ratio of annular jet diameter and duct diameter to the inner jet diameter were approximately 2 and 4, respectively. The inner jet peak axial velocity was approximately one-half the annular jet peak axial velocity and the mean swirl angle in the annular stream was approximately 30 degrees. Results from the studies were related to the five shear regions within the duct: (1) the wake region downstream of the inlet, (2) the shear layer between the jets, (3) the annular recirculation region, (4) the reattachment region, and (5) the centerline recirculation region.

A flow visualization study was conducted using fluorescence dye as a trace material and high-speed motion pictures to record the dye patterns in selected r-z and r- planes. The results of the flow visualization study are summarized with the following observations:

- 1. The flow was as axisymmetric as could be determined visually.
- 2. The larger scales of the turbulent structure were observed to grow within the centerline recirculation region. This growth occurred from the width of the wake region downstream of the inner jet tube to a large fraction of the duct diameter.
- 3. Downstream of the centerline recirculation region, the flow initially had large lobes which evolved into a vortex swirl pattern. There was little radial mixing downstream of the recirculation cell.
- 4. The high intensity turbulent eddies in the shear layers were not axisymmetric or periodic. The large scale waves and eddies appeared to have a range of wavelengths.
- 5. Two major mixing regions were observed: (1) at the interface between the inner jet and the centerline recirculation zone, and (2) at the interface between the inner jet and annular jet streams.
- 6. Mixing at the interface of the inner stream and the recirculation cell diluted the inner jet concentration and the resulting mixture of fluid from the recirculation cell and the inner jet was entrained by the swirling annular stream.

A detailed map of the velocity, concentration, mass turbulent transport rate and momentum turbulent transport rate distributions within the test section was obtained to provide data for the evaluation and

(1)

improvement of turbulent transport models. Data sets of velocity component pairs were obtained simultaneously to determine the momentum turbulent transport rate and mean velocities. Data sets of velocity and concentration pairs were obtained simultaneously to determine mass turbulent transport rate, concentration and velocity. Probability density functions (p.d.f.s) of all the forementioned parameters were obtained from the data sets. Mean quantities, second central moments, correlation coefficients, skewness and kurtosis were calcualted to characterize each data set. Following are the principal results from this study.

- 7. The axial, radial and azimuthal velocity profiles described the changes in the shear regions within the duct.
- 8. The mean and fluctuating concentration profiles described the inner jet fluid distribution within the duct.
- 9. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.
- 10. The momentum turbulent transport rate measurements in the r-z, z- θ and r- θ planes described the local momentum fluxes due to turbulent mixing. Correlation coefficients were obtained for each measurement location and data set.
- 11. The principal momentum turbulent transport was in the r-z plane; i.e., uv, and was attributed to the axial velocity gradients. Peak momentum turbulent transport rates were approximately the same as for the nonswirling flow condition.
- 12. The axial mass turbulent transport is gradient rather than countergradient as occurred for nonswirling flow. The peak axial mass transport rates were greater than the peak radial mass transport rates even though the axial concentration gradients were approximately one-seventh the radial gradients.
- 13. The mass turbulent transport process for swirling coaxial flow is very complicated. Mixing appears to occur in several steps of axial and radial mass transport coupled with a large radial mean convective
- 14. The transport process appears to begin with high concentration fluid from the centerline recirculation zone. The diluted inner jet fluid is then convected by the negative axial velocities into the large eddy shear region between the inner and annular streams.
- 15. Axial mass turbulent transport correlation coefficients as high as 0.5 were measured. These correlation coefficients were less than the

R83-915540-26

peak mass transport correlation coefficients obtained for nonswirling flow although the axial mass transport rate for swirling flow was greater than that for nonswirling flow.

16. The skewness of the axial velocity, p.d.f.s was related to the curvature of the axial velocity profiles. $_2S < 0$ was obtained for $_2^2U/_2r^2 < 0$ while S > 0 was obtained for $_2^2U/_2r^2 > 0$. The skewness was also proportional to the magnitude of $_2^2U/_2r^2 > 0$.

REFERENCES

- 1. Gerstein, M. (Ed): Fundamentals of Gas Turbine Combustion, NASA Conference Publication 2087, 1979.
- 2. Hudson, D. A.: Combustion Modeling Needs for the '80s. AIAA Preprint 80-1288.
- 3. Mellor, A. M.: Turbulent-Combustion Interaction Models for Practical High Intensity Combustors: Seventeenth Symposium on COmbustion, p. 377, Combustion Institute, 1979.
- 4. Dryburgh, D. and R. B. Edelman: Technical Evalution Report on the Propulsion and Energetics Panel 54th Meeting on Combustion Modeling. AGARD Advisory Report No. 153, March 1980.
- 5. Mularz, E. J.: New Trends in Combustion Resarch for Gas Turbine Engines. NASA Technical Memorandum 83338. AVRADCOM Technical Report 83-C-1, June 1983.
- 6. Sturgess, G. J.: Aerothermal Modeling. Phase I. NASA Contractor Report CR-168202. May 1983.
- 7. Johnson, B. V. and J. C. Bennett: Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets. NASA Contractor Report CR-165574. Also issued as UTRC Report R81-915540-9, November 1981.
- 8. Application of Non Intrusive Instrumentation in Fluid Flow Research. AGARD Conference Proceedings No. 193. May 1976.
- 9. Johnson, B. V. and J. C. Bennett: Velocity and Concentration Characteristics and Their Cross Correlations for Coaxial Jets in a Confined Sudden Expansion Part I: Experiments. Proceedings of ASME Fluids Engineering Conference on Fluid Mechanics of Combustion Systems, Boulder, CO, June 1981, p. 145.
- 10. Habib, M. A. and J. H. Whitelaw: Velocity Characteristics of Confined Coaxial Jets With and Without Swirl. ASME Journal of Fluids Engineering, Vol. 102, pp. 47-53 (1980).
- 11. Schetz, J. A.: Injection and Mixing in Turbulent Flow, Vol. 68, Progress in Astronautics and Aeronautics, AIAA, 1980.
- 12. DISA 55X Modulat LDA Optics-Instruction Manual. DISA Information Department; DISA Electronics.

①

R83-915540-26

- 13. ---: Data for Dye Lasers. Kodak Publication No. JJ-169, March 1972.
- 14. Hinze, J. O.: <u>Turbulence</u>, McGraw-Hill, NY, 1959, Chapter 7.
- 15. Lumley, J. L.: Cornell University. Private Communication, July 20, 1983.
- 16. Lu, S. S. and W. W. Willmarth: Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer, J. Fluid Mechanics, Vol. 60, Part 3, pp. 481-511 (1973).
- 17. Willmarth, W. W.: Structure of Turbulence in Boundary Layers, Advances in Applied Mechanics, Vol. 15, Academic Press, NY, 1975.
- 18. Tennekes, H. and J. L. Lumley: <u>A First Course in Turbulence</u>, Chapter 6., MIT Press, 1972.

①

APPENDIX I

FLOW VISUALIZATION FOR ALL FLOW CONDITIONS

Flow visualization studies were conducted prior to the selection of the flow condition for detailed data acquistion to determine the effects of the velocity ratio, U_i/U_a , on the flow characteristics within the test section.

Motion pictures were obtained in the r-z plane with the center of illumination at z=100 mm and in the r- θ plane at selected axial locations. Motion pictures with a frame speed of 500 per second were obtained for each of the following five flow conditions:

Flow	Mean Axial	Velocity, m/s	Flow Rate, gpm		
Condition	Inner Jet, \overline{U}_{i}	Annular Jet, \overline{U}_{a}	Inner Jet	Annular Jet	
1	0.52	1.66	6.2	52.8	
2	0.27	1.66	3.2	52.8	
3	2.08	1.66	24.6	52.8	
4	094	1.51	11.1	48.0	
5	0.94	2.87	11.1	94.8	

In the following paragraphs, the flow visualization photographs for Flow Conditions 2 through 5 presented in Figs. 70 through 73 will be discussed. The discussion of Flow Condition 1 (Fig. 10) will be repeated for reference. Each figure contains two photographs taken in the r-z plane. The photograph at the top left side shows the flow characteristics when dye is injected into the inner stream. The photograph at the top right side is a visualization of the flow field when dye is injected into the annular stream. The four photographs presented at the bottom of each figure show the flow characteristics in the $r-\theta$ plane at selected axial locations when dye is injected into the inner stream.

Flow Condition 1

Photographs taken for Flow Condition 1 in both the r-z plane and at selected axial locations in the r- θ plane are presented in Fig. 10. The photographs taken when dye is injected into the inner stream (top left) shows that a high inner jet stream concentration persists for an axial distance of approximately 70 mm. In the photograph taken when dye is injected into the annular stream (top right), dye has been entrained near the centerline between an axial distance of approximately 60 mm to 170 mm indicating the presence of a recirculation cell near the centerline. The exis-

R83-915540-26 tence of this recirculation cell becomes more apparent in the high-speed

films and appears to extend to almost 150 mm. Both photographs show large scale eddy structure in the shear layer between the jets starting at an axial distance of approximately 30 mm and extending downstream to at least 175 mm. The scale of these eddies at z = 50 mm is more than half the inner jet diameter of 30 mm. Although the eddy sizes are large, the eddy structure did not appear to be periodic or symmetric. When dye is injected into the annular stream, the annular recirculation zone adjacent to the test section inlet plane and the attachment region downstream of this annular recirculation zone are clearly defined. The length of this annular recirculation cell is approximately 50 mm which is about one-third the length observed with nonswirling flow for the same flow condition.

The photographs taken in the r-0 plane at z = 25 mm shows the radial scale (= 6 mm) of the eddy structure at the upstream end of the shear region. At z = 51 mm, the scale of the large eddy structure has increased significantly but does not appear to change appreciably from z = 100 mm to z = 200 mm. As shown by the photographs in both the r-z and r- θ planes, the large eddy structure is not axisymmetric or azimuthally periodic for z > 50 mm.

Flow Condition 2

The inner jet velocity, U;, for Flow Condition 2 was approximately one-half that of Flow Condition 1. The photographs, (Fig. 70) indicate that the overall flow characteristics are similar to those observed for Flow Condition 1. However, as a result of the reduction in inner jet velocity, the distance over which the high inner jet fluid concentration extends from the test section inlet has been decreased from approximately 70 mm to 35 mm.

Flow Condition 3

The mean inner jet axial velocity for this flow condition was approximately four times that for Flow Condition 1. As a result, the inner jet stream was flowing faster than the annular stream. The ratio of the peak inner jet to the peak annular velocity was estimated to be approximately two. As shown in Fig. 71, the flow field for this flow condition differs from Flow Condition $\overline{1}$ in that the flow becomes asymmetric and the inner jet precesses around the centerline for z > 70 mm. The flow appears to be influenced by two forces: (1) the tendency of the inner jet to flow downstream without recirculating and (2) the strong tendency of the swirling annular flow stream to form a centerline recirculation cell. The result appears to be a combination of the two effects in that the inner stream is deflected by the swirling flow in the centerline recirculation cell.

Flow Condition 4

This flow condition has approximately the same total flow as Flow Condition 1, however, the ratio of the inner stream mean velocity to annular stream mean velocity has been increased from 0.32 to 0.64. Based on measurements in Ref. 8, the peak axial velocities in the inner and annular stream are expected to be approximately equal. The photographs (Fig. 72) indicate that the flow field appears to be axisymmetric and stationary. Inner jet velocities 20 to 30 percent greater than that for Flow Condition 4 are required to obtain the precessing center jet characteristics of Flow Condition 3. Compared to Flow Condition 1, the length of the annular recirculation cell is 30 to 50 percent greater and the distance from the inlet plane to the inner recirculation cell is increased by 50 percent. The large scale eddy characteristics also appears approximately the same for Flow Conditions 1 and 4.

Flow Condition 5

The velocity ratios for Flow Conditions 5 and 1 are equal; however, the absolute velocity for Flow Condition 5 is increased by a factor of 1.8 compared to Flow Condition 1. The photographs presented in Fig. 73 indicate that the flow characteristics for Flow Condition 5 were essentially the same as those observed with Flow Condition 1.

The flow visualization study showed (1) an additional flow region; namely, a centerline recirculation region, which occurs when swirl is introduced into the annular stream of confined coaxial jets and (2) the inner jet will precess when the ratio of inner jet velocity to annular stream velocity exceeds a critical value. These characteristics of confined swirling jets have been previously recognized in the literature.

APPENDIX II

SWIRLER EXIT MEASUREMENTS

Laser velocimeter measurement techniques were used to determine the mean and fluctuating velocity distributions approximately 5 mm downstream of the swirler exit face when the trailing edge of the swirler was repositioned at the test section inlet. Data was obtained at various azimuthal and radial locations to define the velocity distribution at the swirler exit. This survey was made because the flow field downstream of the swirl vanes will contain wakes caused by the blade skin friction. Also, the flow field will be influenced by secondary flows which result from the interaction of boundary layers on the vane end walls with the pressure gradient in the vane passage.

Prior to the detailed data acquisition, axial and azimuthal velocity data was obtained at the swirler location r/R = 0.40 by rotating the swirler and the center duct in 15 deg increments while maintaining the laser velocimeter probe volume at the same location. The azimuthal velocity profiles were to be used to determine the swirler asymmetries and to select an azimuthal location for a more detailed velocity survey. Since the swirler has eight blades, three measurements were obtained downstream of each blade passage. Although the velocity distributions obtained showed some blade-to-blade variation, the variations were only a fraction of the variation across each blade. The blade passage chosen for the detailed measurements was one with a local velocity distribution representative of the entire swirler and was the center passage of three passages which had nearly identical velocity distributions. This blade passage was also the passage in which the detailed measurements presented in the main body of this report were taken.

The flow field 5 mm downstream of the selected vane passage was characterized by making a velocity survey of the axial, radial and azimuthal velocities along radii starting at r/R = 0.225 (the location of the thin metal tube separating the inner and annular jet streams) and ending at a radial location $r/R_{\lambda} = 0.6$ which is approximately 7 mm outside the annular passage. Data was obtained at ten azimuthal locations, five (5) deg apart by rotating the center tube and swirler as shown in Fig. 74. The striped blade shown in Fig. 7.4 is a reference blade chosen for swirler orientation purposes. The detailed measurements reported in the main body of the report were taken with the leading edge of the reference blade set at $\phi = 75$ deg. The LV measurements were made for the axial/azimuthal velocities by traversing horizontally first, along the radius indicated by swirler orientation ϕ = 50 deg (leading edge of reference blade set at ϕ = 50 deg). Horizontal traverses were then made along the other radii indicated in Fig. 74 by rotating the reference blade through 5 deg increments. In this way, the flow field downstream of a single swirler vane and vane

passage could be characterized. LV measurements were made to determine the axial/radial velocities by first rotating the center tube and swirler 90 degr and then traversing vertically along each radii. The velocity surveys were made first with the trailing edge of the swirler vane positioned at the inlet plane of the test section (Runs 59 through 78); and then repeated with the trailing edge of the swirler vane positioned 51 mm upstream of the inlet plane of the test section (Runs 79 through 98).

As shown in Fig. 74, the velocity measurements made at swirler orientations $\phi=50$, 55, 60 and 95 deg were made in the passage between blades and it would be expected that the axial velocity profile would show no effects of blade wakes. Also, since swirler orientations $\phi=50$ and 95 deg are at the same relative location for two vanes, it would be expected that the velocity distributions for these two locations would be nearly identical. The axial velocity profiles presented in Fig. 75 substantiate these expectations.

As shown in Fig. 75, the velocity distributions at swirler orientation $\varphi=50$ and 95 deg are nearly identical and are easily identifiable, when compared to the intermediate orientations, as being periodic profiles. The profiles obtained at $\varphi=55$ and 60 deg are similar and show little effect of blade wakes. However, the effect of blade wake on the axial velocity is seen in the profiles obtained for swirler orientations $\varphi=65$ through 90 deg. The vane wake produced a dip in the axial velocity profile which occurred at a different radial location for each swirler orientation. Note that the largest dip occurred for a swirler orientation of 80 deg which corresponds to measurements made essentially along the central part of the blade (see Fig. 74).

The mean radial velocity profiles are shown in Fig. 76. The radial velocity downstream of the inner jet increased from a value of zero at the centerline, as expected for axisymmetric flow. Small differences in the profiles occurred for 0.22 < r/R < 0.25 and can be attributed to interaction of the inner jet flow with the flow from the swirler. The distribution of the radial flow inward and outward for 0.25 < r/R < 0.5 is attributed to (1) the formation of corner vortices due to the inviscid conservation of vorticity as the flow through the swirler is turned by the vanes and (2) the radially inward acceleration of low energy flow in the blade wakes. For swirler orientations $\phi = 50$, 55, 90 and 95 deg, where the axial velocity profiles were essentially smooth and free of the effects of the blade wakes, the radial velocity profiles are probably being affected by secondary vortices.

The azimuthal velocity profiles presented in Fig. 77 show larger relative velocity changes, due to the blade wakes and secondary flows in the vane passages, than the axial and radial velocity profiles. The variations in the azimuthal velocity profiles due to the blade wakes occurred at the same combinations of swirler orientation and radius as for the axial

velocity profile, i.e., $\phi = 60$ deg and $r/R_0 = 0.3$ to $\phi = 85$ deg and $r/R_0 = 0.3$ 0.45. Note the azimuthal velocity was slightly greater for $0.\overline{5} < r/R_{\odot}$ 0.6 than for r/R = 0.48. In this region, 0.5 < r/R < 0.6, the axial velocities were near zero and the flow was coming from the recirculation cell. This comparison shows that the angular momentum imparted to the flow for 0.45 < r/R < 0.50 was less than that in the outer recirculation cell and hence less than the average angular momentum imparted over the entire blade. This may be due to the leakage around the outer tip of the swirler blades. The blades are soldered to a hub which is fastened to the inner annular wall but they are unattached to the outer annular wall and have approximately 0.1 mm clearance. Some variations in the azimuthal velocity profile, e.g., at ϕ = 75 deg and r/R = 0.4, may be caused by the secondary flows developed in the vane passages due to the axial velocity profile at the vane entrance. Another interesting feature of the azimuthal velocity profile is the negative velocity at $\phi = 80$ deg and $r/R_0 = 0.47$. The azimuthal velocity profiles also show variations at radial locations where the axial velocity profiles were smooth. With an almost uniform axial velocity profile in the center of the vane passage, the radial and azimuthal velocity profiles should be coupled by any secondary vortex flow.

The axial, radial and azimuthal velocity profiles obtained with the trailing edge of the swirler vane was positioned 51 mm upstream of the test section inlet plane are presented in Figs. 78, 79 and 80, respectively. The axial velocity results presented in Fig. 78 show that the profiles were more nearly uniform but the effects of the blade wakes were still present although the dips in the velocity profiles associated with the wakes were not as pronounced. The radial and azimuthal velocity profiles shown in Figs. 79 and 80 also show the same trend. It appears that even though the swirler is set back 51 mm from the inlet plane of the test section, the velocity profiles a short distance downstream from the inlet to the test section were not axisymmetric because the effects of blade wakes and/or secondary flows still persisted. These asymmetries in the flow were apparent in the velocity profiles obtained at an axial location of 5 mm which were presented in Figs. 13, 14 and 15.

The fluctuating axial, radial and azimuthal velocity profiles obtained when the trailing edge of the swirler was positioned at the inlet plane are shown in Figs. 81, 82 and 83, respectively. Note that the turbulence intensity in the core region was approximately 3 to 4 percent of the axial velocity which is the magnitude expected in the central region of developed tube flow. The fluctuations were highest at the interface between the inner and annular jet (r/R = 0.25) and between the annular jet and the recirculation zone near the outside wall (r/R = 0.5). There were also relatively high fluctuations in the blade wake regions.

The fluctuating axial, radial and azimuthal velocity profiles obtained when the trailing edge of the swirler was positioned 51 mm upstream of the inlet plane of the test section are presented in Figs. 84, 85 and 86

respectively. The fluctuations at the interfaces were still present but they have been substantially reduced especially at the interface between the inner jet and the annular jet. The greatest reductions occurred in the fluctuating radial velocity profiles. Substantial reductions in the fluctuation due to the blade wakes also occurred but the fluctuations did not completely disappear.

The momentum turbulent transport rate distributions in the r-z plane, uv, which were obtained for the swirler exit plane at the test section inlet plane are presented in Fig. 87. This transport is related to the strain rate: $\partial U/\partial r + \partial V/\partial z$. For those profiles without blade wakes near the ID of the swirler (r/R = 0.25) or near the OD of the swirler (r/R = 0.50), the transport is similar to that shown in Fig. 22. For the swirler orientations where the blade wakes are present, the momentum turbulent transport rates were of the same magnitude as those in the ID or OD region. Note that the turbulent transport rates in the core regions were negligible. The momentum turbulent transport rate distribution, uv, obtained when the swirler was moved 51 mm upstream of the entrance to the test section are shown in Fig. 88. The profiles have become more uniform and the momentum transport has been substantially reduced in the blade wake regions.

The momentum turbulent transport rates in the z- θ plane, uv, are shown in Fig. 89. This transport is related to the strain rate: $(1/r)\partial U/\partial \theta + \partial W/\partial z$. The momentum transport was highest at the interface between the inner and annular jets and significant transport also occurred in the blade wake regions. This momentum transport rate was substantially reduced (by a factor or 2 to 3) when the swirler was moved 51 mm upstream of the test section entrance as shown by the distributions presented in Fig. 90. The profiles in Fig. 90 are very similar to the profiles presented in Fig. 24 at the axial location z=5 mm.

The profiles presented in Figs. 75 through 90 show that significant three-dimensional variations can occur in the flow field immediately downstream of a typical combustor like swirler. They also provide insight into initial conditions required for the three-dimensional swirling flows downstream of a swirler inlet. The data was obtained in a simultaneous two velocity component data acquisition mode in the same manner as the turbulent momentum data which was presented in the main body of this report. Therefore, the first four moments of the three velocity components as well as of the local momentum transport in the r-z and z-0 planes were obtained. This data is presented in tabular form in Tables IV-59 through Tables IV-78.

ORIGINAL PAGE 18 OF POOR QUALITY

APPENDIX III

DEFINITIONS OF SKEWNESS AND KURTOSIS FOR VELOCITY, CONCENTRATION, AND TRANSPORT PROBABILITY DENSITY FUNCTIONS

Terms in this appendix for the velocity components and concentrations are defined using the notation of Ref. 18 and conventional statistical methods.

Local instantaneous axial velocity component

B(\tilde{u}) Probability density function (p.d.f.) of \tilde{u} with properties $B(\tilde{u}) \geq 0$

and $\int_{-\infty}^{\infty} B(u) du = 1.0$

U Mean value of axial velocity component defined: $U = \int_{-\infty}^{+\infty} \tilde{u} B(\tilde{u}) d\tilde{u}$

u Local instantaneous axial velocity fluctuation from the mean, defined:

 $u = \tilde{u} - V$

 σ_u or u^{\dagger} Second central moment of velocity u defined: $\sigma_u^{\ 2} = u^{\dagger 2} = \int_{-\infty}^{-\infty} u^2 B(\tilde{u}) d\tilde{u}$

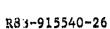
Will also be denoted as rms fluctuation.

 $\overline{u^n}$ nth central moment of velocity u defined: $\overline{u^n} = \int_{-\infty}^{\infty} u^n B(\tilde{u}) d\tilde{u}$

 S_u Skewness of velocity component, u, p.d.f. defined: $S_u = \overline{u^3}/\sigma_{ij}^3$

 K_u Kurtosis (or flatness factor) of velocity component, u, p.d.f. defined: $K_u = u^4/\sigma_u^4$

In like manner, the mean, rms fluctuation, skewness, and kurtosis for the radial velocity, azimuthal velocity and concentration are defined.


The second moments, skewness and kurtosis for the momentum and mass transport rates are defined in a similar manner.

uv. Local instantaneous momentum turbulent transport rate: $(\tilde{u}-U)(\tilde{v}-V)$

B(uv) Probability density function (p.d.f.) of uv with properties B(uv) > 0 and $\int_{-\infty}^{+\infty} B(uv) d(uv) = 1.0$

Méan value of turbulent momentum transport rate definéd: $uv = \int_{-\infty}^{\infty} (\hat{u} - 0) (\hat{v} - V) b(uv) d(uv)$

(uv)' Local instantaneous fluctuation of momentum transport rate from mean, defined: (uv)' = uv - uv

Second central moment of momentum transport rate: $\sigma_{uv} = \int_{-\infty}^{\infty} (uv)^{\frac{1}{2}} B(uv) d(uv)$ σ_{uv}

nth central moment of momentum transport rate: $(uv)^n = \int_{-\infty}^{\infty} (uv)^{+n} B(uv) d(uv)$ $(uv)^n$

Skewness of momentum transport rate: $S_{uv} = (\overline{uv})^3/\sigma_{uv}^3$ suv

Kurtosis of momentum transport rate: $K_{uv} = (\bar{u}\bar{v})^4/\sigma_{uv}^4$ Kuv.

In a like manner, the mean, second central moment, skewness and kurtosis for the momentum transport in the r-z plane and the mass transport in three directions are defined.

TABLE I

Components Used in LV and LV/LIF Measurement System

I. Laser Light Source

Argon Ion Laser (Spectra Physics Model 164)
TEM_w mode
All lines, 1.0 watt power
0.4880 µm wavelength, 0.5 watts power

II. LV Optics

Polarization rotator
Beamsplitter - Module I
Bragg Cell, 1 mHz effective frequency offset
Beamsplitter - Module II
Backscatter Section - 0.4880 µm wavelength filter and photomultiplier tube
Backscatter Section - 0.5145 µm wavelength filter and photomultiplier tube
Pinhole Section
Ream Translator
Beam Expander
Achromatic lens, 310 mm focal length

III. Electronics

LV Signal Processor (SCIMETRICS Model 800A)
2 units
0.4 to 2.0 mHz range
3% data window
4/8 and 5/8 comparison for "good signals"
0scilloscope (Tektronics Model 465B)
2 units
LV Data Handling Interface (UTRC design)
Clock
Coincidence check
Minicomputer (DEC PDP 11/10)
Floppy disk
DECwriter III (1200 baud rate)

IV. LIF Electronics

Low Pass Filter (Kronhite Model 3202)
2KHz

Voltage Amplifier (Preston 8300 XWB Amplifier - Model A)
1-1000X Amplification

A/D Converter (DEC LPS11)
Computer controlled

Digital Voltmeter (Hewlett Packard Model 3465A)

High Voltage Power Supply (Fluke Model 415B)
0-2500 volts

TARLE II

Table of Run Numbers from Which Data was Utilized for Tables and Figures

1		(9	1			***********				
		406.4(1		5 75	45					
		304.8(22)		43	42					
		203.2(8.0) 304.8(22) 406.4(16)		12,40	10,41	26	37	38		
	mm (in.)	5.1(0.2) 12.7(0.5) 25.4(1.0) 50.8(2.0) 101.6(4.0) 152.4(6.0)		14	15	25	35	36		
	Axial Location, z - mm (in.)	101.6(4.0)		5,6	6	24	33	34	54,55	20
	Axial Lo	50.8(2.0)		4	œ	23	31	32	46,50	53
		25.4(1.0)		8	7	22	27	28	47,48	6
		12.7(0.5)				20,21	29	30		
		5.1(0.2)		17	11,16					
	Center-	Line		13,18		19,39	. ,			
	Measured	Parameters		U, W, uw	U, V, uv	U, C, uc	W, C, wc	V, C, Ve	V, W, vw	

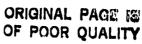
ORIGINAL PACE IN OF-POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

۲	4
۲	4
۲	4
TARIF	1

	ſ 			Or FO	OR QUALITY	
	Figure Number	24 25 55 56 57	26 27 58 59	30 31 64 65 66	28 29 61 62 63	32 33 67 68 69
	Symbol	uw Ruw Suw Kug	R S WV	uf uf Ruf Suf Knf	Ryf Cyf Syf Kyf	Rwf Swf W.r
	Direction or Plane	θ - Ζ	θ	N .	H	Ф .
Figures on Which Results are Displayed	Quantity	Axial-Azimuthal Momentum Transport	Radial-Azimuthal Momentum Transport	Axial Mass Transport	Radial Mass Transport	Azimuthal Mass Transport
on Which Res	Figure Number	12(C/L), 13 16 38 39	14 17 40 41	15 18 42 53	19(C/L), 20 21 44 45	22 23 52 53 54
Figures	Symbol	U u, Su Ku	V V SV K	W W W W	f f S K f f f	uv R _{uv} G _{uv} S _{uv} K _{uv}
	Direction or Plane	Z	H	÷		T-2
	Quantity	Axial Velocity	Radial Velocity	Azimuthal Velocity	Concentration	Radial-Axial Momentum Transport

ORIGINAL PACE IN


AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-3

on: 1 = 0.416 Flow Condition: Axial Location: 25 mm(1.0 in.) Run No.: 3 Test Date: 8/11/82

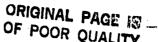
 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	nin-pa
7	
2	
2 / 2 2 2 2 2 2 2 2 2	
#	
22/2 0000000000000000000000000000000000	
できるなる。 ないできる ないない ないできる できる ない	
N	
**** ********************************	

3 0 M M M M M M M M M M M M M M M M M M	
3	

# 1	
(0.00) 1.1 1.2 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4	
+ 1 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1	

MASS AND MOMENTUR TURBULENT TRANSPORT EXPERIMENTS

Geometry:


AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-4

Flow Condition: Axial Location: 51 mm (2.0 in.) Run No.: 4 Test Date: 8/13/82

 $x/R_0 = 0.833$

の	
# 1.40-40-00-00-00-00-00-00-00-00-00-00-00-0	
######################################	
2 / 2	
## 100000000000000000000000000000000000	
2/s2 0.02310 0.02310 0.0034	
would with the analysis of the analysis of a control of the analysis of the an	
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
* E	
# E E E E E E E E E E E E E E E E E E E	
2 041 11 11 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	
# # # # # # # # # # # # # # # # # # #	
# # # # # # # # # # # # # # # # # # #	
1 (0 = 0) (
日 2 - こうさんてはなりまでは、カリリー・ファック・ストラー・ストラー・ストラー・ストラー・ストラー・ストラー・ストラー・ストラー	

United Technologies Research Center/NASA Lawis Research Center (Contract NAS3-22771) MASS AND MOMENTUR THEBHLENT THANSPORT LIPERIMENTS

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

ABLE IV-5

/82 Run No.: 5 Flow Condition: Axial Location: 102 mm (4.0 in.) $x/R_0 =$ Test Date: 8/17/82

7	
Geometry:	
_	377 1

<u> </u>	OF POOR QUALITY
Z	00000000000000000000000000000000000000
Kure	844 4 66 9 4 9 4 8 8 8 6 9 4 4 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Sur	111122
ouw m ² /s ²	00000000000000000000000000000000000000
Ruw	10-10-10-10-10-10-10-10-10-10-10-10-10-1
uw m ² /s ²	00000000000000000000000000000000000000
≯	4mmのmmmののできるできるできるするようなできるようできるできるまである。 できまれるようできないと、全体を含むしまる。 そのではないは、人を受けているないできるないです。 そのではないは、人をできているなってもなってもとれる。
ω ^{js}	
w'm/s	
W m/s	
K _u	できょうぎょうできょうないのなどのまままままままままままらいまらいらいらいしょうできょうではなっているない。ままではまってまるではなっているのはないからなった。ままして思えているようではなった。
Su	0.00 44400 W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W
u'm/s	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1) S/m	
r/Ro	
r mm + (0= 96) - (0= 270)	1 1 1 1 1 1 1 1 1 1
Pr.	ウェビス ちゅうしょうりゅう とどうりょう ロートート・トート トート・トート マネン・ミャミ・リック ピング こうごう こうごう とうしょ トート・トート トート・トート マート・ロート マラー・ロー・ロート マート・ロート マート・ロート マー・ロート マー・ロート マー・ロート マー・ロート マー・ロート マー・ロート マー・ロート マー・ロート マー・ロート アー・ロート アー・ロー・ロート アー・ロート アー

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-6

Test Date: 8/23/82

/82 Run No.: 6 Axial Location: 102 mm

 $x/R_0 = 1.665$ Flow Condition: (4.0 in.) x/R_A =

Geometry:

Sun Kun Kun Kun Kun Kun Kun Kun Kun Kun K
2
က် ကြောင်းမှာ မော်သော
2/sh 1
1 - 1 1 1 4 4 4 4 4 4 4
12/s2 - 01322 - 003400 - 0005139 - 0005139 - 0005013 - 0
nu ozuv wo z oway z v c c o z o z o z o z o z o z o z o z o z
8 47 - 000 40 000 000 000 000 000 000 000 00
4 00000000000000000000000000000000000
N: W.CC.W.W.W.W.C.W.W.C.W.C.W.C.W.C.W.C.W
3 40.40000000004
S
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 E
x/R x x x x x x x x x x x x x x x x x x x
7 = 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
の N

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 8/23/82 Run No.: 7 Flow Condition: 1

Axial Location: 25 mm (1.0 in.) $x/R_0 = 0.416$

Geometry: 2

	OF POOR QUALITY
Z	0.0.0.0.0.2 44 4 0.0.0.0.0.0.0 0 0 0 0 0 0 0 0 0 0
Kuv	ままれる ようほう ままま スペー スターオス・サーク・サーク はっちょう はっちょう はん アプルグ・サンド みんよう まみ アプラング・ネット・スタング・ネット・スタース・スタース・スタース・スタース・スタース・スタース・スタース・スター
Suv	
duv m ² /s ²	000000
Ruv	
	1 1 1 1 1 1 1 1 1 1
, K	# m44 # m44 m44 m44 m44 m4 m44 m4 m44 m4
S ₂	
m/s	
V W	
, K	4 10 0.1 1 10 10 10 10 10 10 10 10 10 10 10 10
Su	1 1 (T
s/w	ここままままれるものころであることできまするようであるます。 このようのではなくしつのもまりをはっているものできなってっちんからのまなくしつのもまりをまりないできます。 とっちますんは、「「「「」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」、「」、「
11 S/m	
r/R _o	1
r mm +(0=0) -(0=180)	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
No.	こうりのガンが会やとでものもなくとはいまな手のもなっていますというとしているというとしているというというというというというというというというというというというというというと

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

TABLE IV-8

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Flow Condition: 1 $x/R_0 = 0.883$ Axial Location: 51 mm (2.0 in.) Run No.: 8 Test Date: 8/25/82

P. .

Geometry:

z	444000000444444000044 0000000000000000
Kuv	######################################
Suv	
o uv m2/s2	0000000000000000000000000000000000000
R uv	1 111111 1 11 11111 CCCCCCCCCCCCCCCCCC
uv m ² /s ²	
₹	スス 4ス 50 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
% 2	
v, s/m	00700% W.W. 44000% W.W. 400-00% W.W. 44000% W.W. 400 W.W
y e	
K _U	0.000040000000000000000000000000000000
S. S.	- 1111 1-11
u'u R/R	いっこうできるようでいっこうできるよう。 できることできるようなのででは、 でするできまするないでは、またできました。 できなともあるようでは、
S/at	
r/Ro	
r mm +(0=0.) -(0=180.)	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

TABLE IV-9

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Flow Condition: 1 8/25/82 Run No.: 9 F1 Axial Location: 102 mm (4.0 in.) Test Date: 8/25/82

Geometry:

	z	ななん ちゅうしゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ち
	Kuv	ロールのできる かっちょう カール・オスカー しょう でって アファスース はっていき オファス・スク・スク・スク・スク・スク・スク・スク・スク・スク・スク・スク・スク・スク
	Suv	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
	ouv m ² /s ²	00000000000000000000000000000000000000
	Ruv	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
. [uv m ² /s ²	### ##################################
	Ϋ́,	するできることはよるようななななないのできることできるようであっている。 こうちゅう アン・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス
	83	
	v' m/s	
	V m/s	
	Ku	*
	Su	「
	u'u s/m	######################################
	u m/s	111111
	r/R _o	1 1 1 1 1 1 1 1 1 1
	r mm +(0=0) -(0=180)	$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}$

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771) MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IN OF POOR QUALITY

DATA AND CORRELATIONS AXIAL AND RADIAL VELOCITY

3,331 Flow Condition: in.) (8.0 Run No.: 10 ШШ Axial Location: 203 Date: 8/26/82

Test

-(0=180)

+(0=0)

P. t.

Geometry:

2.

484-1808 - 180 - 1 Ę $\sigma_{\rm uv}$ K uv uv m²/s² Š ∞` v v 2 S. u,s/m

EXPERIMENTS TRANSPORT TURBULENT MOMENTUM AND

NAS3-22771) (Contract Research Center Center/NASA Lewis Technologies Research United

そでより もはえり 会をならより もり インサミナー・カリ ムア 空中 光ぶ トンギ どど ろろろう ろうろう とくしょ トートトレート

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS TABLE 1V-11

Flow Condition: 1 $x/R_O = 0.083$ Axial Location: 5 mm (0.2 in.) Run No.: 11 Test Date: 8/26/82

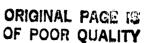
Geometry:

<u></u>	
2	なららごとごのもっちらとのもなっとことをあるというというというというというというとくとくらすをあるらららららららららららららららららなりををとりというというというというというというというというというという
Fav	またり また は は は は は は は は は は は は は は は は は は
Surv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 uv n2/s2	00000000000000000000000000000000000000
Ruv	
nv m ² /s ²	000000 0000000 0000000 0000000 000000
K.	よっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ
S ₂	
, v s/m	0000101101101101101101101100000111100000
V m	
, K	0.7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Su	
n s/m	COUNTIER COU
:1 :2/:E	
r/Ro	
r mm +(0=0) -(0=180)	
No.	はませましたのかなくとはないないのでは、 とままままましたのでいいのでは、これははましました。 ・ まままままました。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-12


/82 Run No.: 12 Flow Condition: Axial Location: 203 mm (8.0 in.) $x/R_0 =$ Test Date: 8/27/82

Geometry:

	OF POOR QUALITY
Z	44444444444444 \$
Kuw	いっしょれれなんのファイルごうほファ でようはままられなののもできるでいるからものできます。 でいまりですて言ならのファミらのはます。
Sur	**************************************
auw m ² /s ²	00000000000000000000000000000000000000
Ruw	11 111 1111
uw m2/s2	00000000000000000000000000000000000000
X.	
α _{,₃}	
w'm/s	000-1-1-1-1000-1-1-1-1-1-1-1-1-1-1-1-1-
W m/s	
ν, n	**************************************
S _u	
s/ti	
11 B/S	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
r/R _o	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
r mm +(0=90) -(0=270)	
Pr No.	しょう かんり かん のま くまん アルリー・アンドル ちゅう イン・ジャ ちゅう イン・ジャン・ジャン・ジャン・ジャン・ジャン・ジャン・ジャン・ジャン・ジャン・ジャ

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

2

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-14

Geometry: 1 2.498 li Flow Condition: Run No.: 14 Axial Location: 152 Test Date: 8/30/82

(6.0

z NAS3-22771) X. σ_{uu} Rus uw m²/s² ₹, - 11111 FILLI FILL က္ခ w/s 000W4444WW-W4444WW C~4G004-VW9GW4KWV-4-W444----W~00W09GG ≥ × s ۳, Š u°s/m ... 'E -(0=270) r mm +(0=90)

(Contract Center Research Lewis Center/NASA Research Technologies United EXPERIMENTS TRANSPORT TURBULENT MOMENTUM

> AND MASS

P. Š

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-15

Flow Condition: Run No.: 15 Test Date: 8/30/82

Axial Location: 152 mm (6.0 in.)

		ORIGINAL PAGE 19 OF POOR QUALITY
z	いい みみ ちゅ みゅ ようこう とうしゅう ちゅう ちゅう ちゅう ちゅう なる よう かゅ かゅ まま まま しゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう ち	OF POOR QUALITY
Karv	Raguera ea 00 a 1 0 4 a 4 Rv & 7 8 6 4 1 6 8 6 0 0 0 1 0 4 a 4 Rv & 7 8 6 7 1 6 8 4 6 6 8 4 7 8 4 7 8 7 8	
Suv	11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6 uv m ² /s ²	60000000000000000000000000000000000000	
Ruv	1 1 1 1 1 1 1 1 1 1	
uv m ² /s ²	00000000000000000000000000000000000000	
¾	でいいことできないできることできることできることでした。 こうできるないとしてなるできる。 こうできるないできることをできる。 こうできることをはるないできる。	
s _y	111 1. 00000004400000000000404 400000400000000	
, v s/m	00000000000000000000000000000000000000	
V s/m	1111111111 1111 11111 111111 111111 1111	
Кu	00000000000000000000000000000000000000	
Su		
u, m/s	### ##################################	
и п/s	111 0000011000000000000000000000000000	
r/R _o	0.1.5.00.00.00.00.00.00.00.00.00.00.00.00.0	
r mm. +(0=0) -(0=180)	1111111 1111 1111 1111 1111 1111 1111	
Pt No.	ジャルート・エー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

EXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS TABLE IV-16

= 0.083Flow Condition: 8/31/82 Run No.: 16 Axial Location: 5 mm (0.2 Test Date: 8/31/82

₽. .ŏ

133 中気体でき

 x/R_{O}

Geometry:

00000 40 40 44 40 00 04 0000 40 00 z N. Sur $^{\sigma}$ uv $^{m^2/s^2}$ 111 12000 1114 111000 1114 111000 111000 Ruv .00061 .00371 .02176 .01890 .00263 .00313 $\frac{uv}{m^2/s^2}$ ج. જ · ^m Α Z Su u s/m 7.400.00 - 1.000.00 - r/Ro r mm +(0=0) 1008875-15-1 775-15-1

AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS MASS

(Contract NAS3-22771)

Center

Research

Center/NASA Lewis

Research

Technologies

United

ORIGINAL PAGE IS

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS Test Date: 8/31/82

TABLE IV-17

ition: 1 $x/R_0 = 0.083$ Flow Condition: Axial Location: 5 mm (0.2 in.) Run No.: 17

Geometry:

	OF POOR QUALITY
×	いくこうようこうごうごう ないこうこうごう するこうこうりゅうりゅう しゅうしゅう はっぱん ひょうしゅう はん はん はっぱん ひゅう はん はんりゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう し
	######################################
Kun	りゅう アール・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・
à	
vi .	1 - 1
σuw m²/s²	00000000000000000000000000000000000000
D E	ICO OMUSCICIOM POR O COLOR
R UN	000-1010001-1000000
. ~	DEDUCACOUNTRE OR ROLLORD CAR A DACK DE MAIOR
uW m ² /s ²	00000000000000000000000000000000000000
	- TO YOU COO THE
* *	
	0.000000000000000000000000000000000000
ωα _æ	00000000000000000000000000000000000000
, x /	4414-0000000000000000000000000000000000
È	60-161-1-10K-1-1-1-10K-1-1-1-1-1-1-1-1-1-1-1-
w w	00000000440404440000404040404040404040
	1
۳, و	
	T M T M C C C S S S S C C C C C C C C C C C C
s _u	11-1 11-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	NOTE OF STREET AND DESIGN OF THE STREET
s/m	0-40-0-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	はたけんでは、 はなけんでは、 はなけんでは、 はなける。 はなける。 はないないない。 はないないない。 はないないないない。 はないないないないないない。 はないないないないないないないないないないないないないないないないないないない
= s/a	7 400 0000 44 440000 4 101 111 111 111 11
%	でなるのでは、資本では、日本のようにははちょうかけることできるとのできます。
¥	1 1 1 1 1 1 1 1 1 1
(0=90)	- 本のでもことできるととなっている。 でしゅんものできょうのはなるとのながなるなんなくましていますのか。
=0)- + (0)+	
No.	するよう おう ひょうしょう とくよう ちゅうしょう とび とりらす とうしょう おんり とくとう とくとう とくしょう エートー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

NAS3-22771)

(Contract

Center

Center/NASA Lewis

Research

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Axial Location: Test Date: 9/20/82

13

(0.5 in.)

Run No.: 20

Geometry: Flow Condition:

x/R

ANUNG SALER COLL CE WOO LACK COCCE C Kuf Suf out m/s Puf Jn 8/H $K_{\mathbf{f}}$ Sr ţ, ż . . *3 /E r nun +(0=90) -(0=270) かんれゅ いやをてすれるみんい らかそもりんみんい らやそんをとどとととだってもままままま

United EXPERIMENTS

TRANSPORT TURBILENT. MOMENTUM UNV MASS

TABLE IV-21

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Run No.: 21 Test Date; 9/22/82

Axial Location: 13 mm (0.5 in.)

Flow Condition: 1

Geometry: 2

_		OF LOOK GOVERN	
*	$\Delta \omega$ Δ $\Delta \omega$ Δ $\Delta \omega$ Δ $\Delta \omega$ Δ Δ $\Delta \omega$ Δ		
Kuf	0.000 0.0 mm		NAS3-22771)
, and	04000000040 10 11 11 11 11 10 11 10 11 10 10 10 10		
o mt	00000000000000000000000000000000000000		r (Contract
Ruf	00000000000000000000000000000000000000		rch Center
uf m/8	00000000000000000000000000000000000000		ewis Research
Ķ	7.8 C		Center/WASA Lewis
တို	111 11		earch Cent
i.			Technologies Research
4	11.00.01 10.00.		
κ _υ •	45-400000000000000000000000000000000000		United
Su'	1411141 1111111 511141141 1411 1411 141		EXPERIMENTS
u s/m	0-11.010.40.40.40.40.40.40.40.40.40.40.40.40.40		PORT EXPE
U m/s			LENT TRANSPORT
r/Ro	111		TUM TURBULENT
r mm +(G=90) (O=270).	### 114		AND MOMENTUM
Pr.	すりろうごうどうこうられ よやらかをとりられ とからからちままましょう ちょくい くかをとてりられ よやらかをこれ ちょういい		MASS /

R83=915540-26

ORIGINAL PAGE IS

Geometry: 2 AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS 'Flow Condition: 1 TABLE IV-22 Run No.: 22 Axial Location: 25 mm (1.0 in.) Test Date: 9/22/82

26		OF POOR QUALITY
	z	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Kuf	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	yng.	
	Jno	00100000000000000000000000000000000000
	Ruf	11.
	uf m/8	00000000000000000000000000000000000000
	, K	######################################
	స్ట	11 11 20 101 14 111
	ţ,	10010000000000000000000000000000000000
	4	7)
	K _u	_ twc 4 x v w w w w w x x v v d d d d d d d d d d d d d d d d
	su.	11
	u s/m	
	m/s	######################################
	r/R _o	2000 E T T T T T T T T T T T T T T T T T
	nun +(0=90) -(0=270)	
	r S	の内はよりなどと目目目目目にはなるというながらながらればない。

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771) MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 19

Geometry: 2 AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS Flow Condition: 1 Run No.: 23 Axial Location: 51 mm (2.0 in.) Test Date: 9/23/82

TABLE IV-23

 $x/R_0 = 0.833$

	OF POOR QUALITY	
z	MUUGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
Kuf	408084 — HHWG464 WHH 4080200W400Che@cyd40Chc) 	
Suf	HEN HEN TH HE WEN STORMONDSONNESSONNOSSON	
σuf m/s	00000004440000000000000000000000000000	Ī
Ruf	######################################	
uf m/s	00000000000000000000000000000000000000	
Kf		
$^{8}_{ m f}$	121242 1212444 14 14220 1222 122222 122222	
f'	WOUNTHOODWWWW.HOODOWHOW SYLWADWWWWWWWWWWAEERS BORECOLVWWEEEWWHOHOWAARR	
f.	0462744000000000000000000000000000000000	
K _u ,	フラフォング さらみようするころ するできる かっぱい かっぱい かっぱい かっぱい かっぱい かっぱい かっぱい かっぱい	
Su.	111	
u s/m		
U. m/s		
r/Ro		
r mm +(0=90) -(0=270)		
P _t No.	11111333333333333333333333333333333333	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS TABLE IV-24

Run No.: 24 Axial Location: 102 mm (4.0 in.) Test Date: 9/23/82

Geometry: 2 Flow Condition: 1 $x/R_0 = 1.665$

	ORIGINAL PAGE 19	
Z	GF POOR QUALITY	
Kuf	00000000000000000000000000000000000000	(1111)
	#DULUNOUM#UNITY 424 ***********************************	10 TO
s/w.	00000000000000000000000000000000000000	J. S.
$ m R_{ m uf}$		Tich Conter
nf m/s		N. K. S.
Κŗ	0.4880L4464CLwwe80CN 4286100062402440CH0 2.8880L534L2004688US	Center/NASA La
$J_{\mathcal{S}}$	21 2 41141 414141 2 41441 414141 2 41481 20 410 00 00 00 00 00 00 00 00 00 00 00 00 0	Research Center
i	00000000000000000000000000000000000000	l l
ę,		Technologies
Ku*		United
Su		EXPERIMENTS
u m/s		PORT EXPE
s/m		MSS AND MOMENTUM TURBULENT TRANSPORT
r/k _o	11111111 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UM TURBUL
r nun +(0=90) -(0=270)	111111 111111 124 A D U D U D U D U D U D U D U D U D U D	NE MOMENT
Pt. No.	44 y \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ASS A

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 9/24/82 Run No.: 25
Axial Location: 152 mm (6.0 in.)

No.: 25 Flow Cor

Flow Condition: 1 Geometry: 2 $x/R_0 = 2.498$

22	ᲐᲐᲣᲐᲢᲗᲢᲗᲢᲗᲢᲗᲢᲗᲗᲗᲗᲗᲣ ᲛᲗ Ს ᲓᲓᲓᲓᲓᲢᲗᲢᲓᲢᲗᲢᲚᲚᲡᲡ ᲓᲗᲝᲡᲓᲘᲓᲓൻᲡᲚᲘᲡᲡᲡᲚᲠ
Kut	
- Suf	
ur m/s	00000000000000000000000000000000000000
Ruf	
n/s	111111 0000000000000000000000000000000
Ϋ́	www.adaawwwaaadadaaww
$^{8}_{f}$	30000000000000000000000000000000000000
<u></u>	######################################
£	
Κ _u ,	4.44.04444444 0.44.044444 4.45440444
¹ ⁿ s	11111 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
,n s/m	22000000000000000000000000000000000000
s/m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
r/R _o	11111111 20/040000000000000000000000000000000000
r mm +(0=90) -(0=270)	
Pt.	コルコロココロア アンシンところ ライド ジウンドラウ エク・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 19 OF POOR QUALITY

Geometry: 2 AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS Flow Condition: 1 Run No.:26 Test Date: 9/24/82

TABLE IV-26

Axial Location: 203 mm (8.0 in.)

		OF FOOR QUALITY	
	2	232002102020222 CB2EC0022222222 WQ422EE00444NGC@64	
	Kuf	4/344444	
	Suf	04440000000000000000000000000000000000	
	Jng M	00000000000000000000000000000000000000	9
	Ruf	111 111 111 110 110 110 110 110 110 110	
	E/E		Marcastel
	Ke	コリカルンシャンシャングルングルング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	/NASA 1.eut
	8	44.04.00.00.00.00.00.00.00.00.00.00.00.0	rch Center/NASA
	ě.	00000000000000000000000000000000000000	es Research
	64	00000000000000000000000000000000000000	Technologies
	Ku•	######################################	United 1
	Sur	22x117446074174400 22x117446074174400 22x11746174400 22x11746174400 22x117461741741741741741741741741741741741741741	MENTS
	n 8/m		ORT EXPERIMENTS
	1) 18/8		NT TRANSPORT
	r/Ro	: : : : : : : : : : : : : : : : : : :	H TURBULE
۱. ا	+(0=90)		AND HOMENTUM TURBULENT
٥	<u>.</u>		MASS AN
			_] ₹

ORIGINAL PAGE 16 OF POOR QUALITY

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS Run No.: 27 Test Date: 10/7/82

TABLE IV-27

Axial Location: 25 mm (1.0 in.)

Geometry: 2 Flow Condition: I

 $x/R_{\lambda} = 0.416$

0	,		
_			
	-	٠.	-

- 1	-	
	2	44444444444444444444444444444444444444
	K	
	Swf	
	JA B	20000000000000000000000000000000000000
	F.	111
	wf.	00000000000000000000000000000000000000
	.	21 19 14 17 14 17 2 10 14 14 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	J _S	1 1 1
	.	
	41	22.22.22.22.22.22.22.22.22.22.22.22.22.
	*	4 E C 4 L 4 4 L 7 A L 7
	B.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	W. 18/8	
	¥ m/s	111
	r/R _o	5.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
	r nun + (0=90) - (0=270)	-1-0
	Pt No.	でした。日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日

ORIGINAL PAGE IS OF POOR QUALITY

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Flow Condition: 1 mm (1.0 in.) Run No.: 28 Axial Location: 25 Test Date: 10/7/82

r/Ro

-(0=180)### +(0=0)+

 $x/R_{o} = 0.416$

Geometry: 2

-	
Kyt.	AUMARTH ALMEN Z MEN AME AL MARCOWORDONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNAMONICA ACCIONOUNA ACC
Svf	
J^C m/s	00000000000000000000000000000000000000
$R_{\rm vf}$	1 1111 1111 1-1 0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
vf m/8	1
Ϋ́	######################################
Sf	
Į.	0.000000000000000000000000000000000000
ų	11 12 13 13 13 13 13 13 13 13 13 13
Χ̈́	50480101644WW04WCDWW4WD4W0004 0448220454201620000000000000000000000000000000000
λg	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'V S/EE	#####################################
V m/s	000000014600101000000000000000000000000

United Technologies Research Center/NASA Lewis Research Center (Contract NASJ-22771) MASS AND MORENTUM THRBLENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 19

-29	SS TRANSPORT DATA AND CORRELATIONS	Flow Condition: 1 Geometry:	
TABLE IV-29	AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS	Test Date: 10/7/82 Run No.: 29	Axial Location: 13 mm (0.5 in.)

R83-915540-26	6	ORIGINAL PAGE 19 OF POOR QUALITY	
	z	シックンようひひょうちょ 44444400 うちおこのひらりひりひとしりりつり カンネトレムとおっちゃりらい	
	Kyf	шиопопомоманием по	(17.72
8	S	T G G G GIII T G G G G G G G G G G G G G	act NAS3-22771
ELATIONS Geometry:	o vf	00000000000000000000000000000000000000	(Cont.r
CORR 1	Rwf	01000000000000000000000000000000000000	rch Center
TRANSPORT DATA AND Flow Condition: $x/R_0 = 0.208$	wf m/s	00000000000000000000000000000000000000	Research Center/NASA Lewis Research
NSPORT DATA AND Flow Condition: $x/R_0 = 0.208$	K.	######################################	r/NASA Le
C	¥ _S	12. 1-1-1	rch Cente
TABLE IV-29 N AND MASS No.: 29 1.5 in.)	<u>.</u>	01100000000000000000000000000000000000	
TAB CENTRATION A Run No. 13 mm (0.5	4.	10.00000000000000000000000000000000000	Technologies
	K _W	でいるひなたメルルは日本が当るとのできる。このできることをできるのは、このできることをできるのは、このできるのは、このできるのは、このできるのは、このできるのは、このできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできる。このできるできるできる。このできるできるできる。このできるできるできる。このできるできるできる。このできるできるできるできる。このできるできるできるできるできるできるできるできるできるできるできるできるできるで	United
→ • ⊢	් ක්	1 11111 111111 1 1 1 1 1 1 1 1 1 1 1 1	EXPERIMENTS
AZIMUTHAL VELOCITY, Test Date: 10/7 Axial Locat	W' H/s	0.000000000000000000000000000000000000	
AZ IMUT Te:	E S/E	20	NT TRANSPORT
•	r/Ro	2170.00 TANGOTTO TO	IM TURBULENT
	r nm +(0=90) -(0=270)		AND MOMENTUM
	P. No.	744707#2-10m47.00004m47.0	MASS AN

ORIGINAL PAGE 19 OF POOR QUALITY

R83-915540-26

TABLE IV-30

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Axial Location: 13 mm (0.5 in.) Run No.: 30 Test Date: 10/11/82

Flow Condition: 1

Geometr: 2

 $x/R_{o} = 0.208$

×	本自己者内内の自身を与る者のともようなのかのなる。本自己者内内の自身を与るなるとのなるのが、自身を与るならららららららららららららららららららららららららららららららららららら
Kyf	m mm m m m m m m m m m m m m m m m m m
B _V f.	Luinwur i maui in roni w binii w ti woorowwocumumarraorroaoaowraooruna woorowwocumumarraorroaoaowraoo
۵ دو ۱۱۳/۱۱	
Ryf	1
vf m/8	
Kf	4 40 4 70 8 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Sf	
š 4 ·	2/150/0000000000000000000000000000000000
4	
, K	# 4 / w 14 # 4 / w w 4 w 2 v v w 4 w w 1 4 4 4 w v 2 v / w 4 w 4 # 7 2 2 4 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2
ιδ _V	1
υ, m/s	2 - 2.0.000
V m/s	
r/R _o	
r mm +(0=0) -(0=180)	
Pt.	おより しゅうしょうしょう いいいい ちゅうしょう くんしゅう しょう ちゅうしょう おんしゅう おんしゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

(Contract NAS3-22771)

United Technologies Research Center/NASA Lewis Rescarch Center

ORIGINAL PAGE 1/2 OF POOR QUALITY

R83-915540-26

TABLE IV-31

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Run No.: 31 Axial Location: 51 mm (2.0 in.) Test Date: 10/11/82

Flow Condition: 1

Geometry: 2 $x/R_0 = 0.833$

· 		
26	キュュキャスキウラウザウウオキャウキャイクタキャング・マット ちららう ウッカック ちゅうりゅう ちららて おいり ちゅう ちゅう ちゅう ちゅう ちゅう ちゅう くろう ストース ちららう ちゅう ちゅう ウィル ティスト ちららう ちゅう ちゅう ウィル・スト ちららう ちゅう ちゅう ちゅう しょう オートスト ちょう ちゅう ちゅう ちゅう ちゅう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	
Kuf	は なるものできなうののあるならららまることで ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	NAS3-22771)
Suff	F. 1 101 WHWHEN FREE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE THE TEME TO THE T	
σwf m/s	00000000000000000000000000000000000000	Center (Contract
Ruf	1	Research Cen
J.n.	00000000000000000000000000000000000000	Levis Res
K£	11111111111111111111111111111111111111	Center/NASA
Sr		Research Cer
ij	07077074453304403004453 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
44	+ 0 + 0 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	d Technologies
₩.	-4u44bu4w4w444bu4wttaww -0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	United
sa [*]	20000000000000000000000000000000000000	FXPERIMENTS
w' m/s	7	
s/≡	0.000000000000000000000000000000000000	AND MOMENTIPE THERMILENT TRANSPORT
r/R ₀		THE THERE
r mm +(0=90) -(0=270)	וון	
Pr.	ときずららかいまなでは、これがあるようなない。	NA K
		

ORIGINAL PAGE 13 OF POOR QUALITY

R83-915540-26

TABLE IV-32

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Axial Location: 51 mm (2.0 in.) Run No.: 32 Test Date: 10/12/82

Flow Condition:

 $x/R_O = 0.833$

24	######################################
3. A.	40300000000000000000000000000000000000
8vf∙.	
ovf m/s	30 200 000 000 000 000 000 000 000 000 0
Rvf	1113
vf m/8	111 0000000000000000000000000000000000
Kŗ	111 122 14 14 17 17 17 17 17 17 17 17 17 17 17 17 17
SF	
ş,	20/20/20/04/1001000000000000000000000000
₩	ttw000ttw000000tt44000000 twxtpw44pppt0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ᅪ	mad attadaaaaantnuuuuuuuuuuuuuuuuuuuuuu
λ _α	11 111111111111
s/E	
V Els) 5)5655555946646046050557664 JULIN 14 44 14 JULIN 12 12 12 12 12 12 12 12 12 12 12 12 12
r/Ro	
nm +(0=0) -(0=190)	######################################
No.	AWAWACARANCARATA BANA CARAS BANA CARAS BANA

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 1887 OF POOR QUALITY

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

TABLE IV-33

Axial Location: 102 mm (4.0 in.) Run No.: 33 Test Date: 10/12/82

Flow Condition: 1 $x/R_0 = 1.665$

Geometry: 2

	A CONTRACTOR OF THE CONTRACTOR	
*	433343333344443333 33334333334333333 33334333333	
Kuf		
Swf		
o _{wf} m/s	00000000000000000000000000000000000000	
Rwf	00000000000000000000000000000000000000	
m/s	11111111111111111111111111111111111111	
K£	U 4 V WN X H4 ON 44 U Q 4 N 4 4 4 X 4 L **********************************	
Ş	Cum	
<u>.</u>	00000000000000000000000000000000000000	
₩.	CCTDCTCCTREDCTCCCCCCCCCCCCCCCCCCCCCCCCCC	
궑.	4404444444444 000000000000000000000000000000000000	
a a	1 111111 1 11111 1 1 1 1 1 1 1 1 1 1 1	
. N	200	
W m/s		
r/R _o	111111 1111111 11111111 11111111111	
r mun +(0=90): -(0=270)		
Pt No.	ヨュニュニュニュンスンス コーカー ローカー ローカー ローカー マーカー ローカー ローカー ローカー ロ	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

TABLE IV-34

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Date: 10/12/82 Run No.: 34 Axial Location: 102 mm (4.0 in.) Test Date: 10/12/82

> -(0=180) r #(0=0)

Geometry: Flow Condition: 1

 $x/R_0^1 = 1.665$

меренения при
\$10111 [W [
0000000000000000000000000000000000
000000000000000000000000000000000000
H
X
0 40 1 1 111111111111111111111111111111
1 000000000000000000000000000000000000
#
ж марааамататыманымары поэрары эрричены поэрары эрричены пороженый пороженый порожены
α
2001-0000000000000000000000000000000000
D E 0004010101010101010100000000000000000
8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS TABLE IV-35

Test Date: 10/13/82 Run No.: 35 , Axial Location: 152 mm (6.0 in.)

Flow Condition: 1

 $x/R_0 = 2.498$

ndition: 1 Geometry: 2

		OF POOR QUALITY
2	2021220202020202020 2200000000000000000	
Kuff	2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Swf		
owf m/s	00000000000000000000000000000000000000	
ar .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
wf m/s	00000000000000000000000000000000000000	
Kg	wwwwawaaanannaaanann 	
Jg		
4	000000000000000000000000000000000000000	
4-1	207475	
¥	wwawawaaaaawwwwwwwwww 	
[#]		
N H	22424242424242424242424242424242424242	
s/m		
r/R _o	1111111111 2-17-14440-144411-00444 2-17-14440-144411-00444 2-17-1440-144411-0044	THE
r mm +(0=90) -(0=270)	# 1 # 1 1 1 1 1 1 1 1	AND MOMENTAL
No.	ちょうちゅうしゅう いまんしゅう (できる)	N S S S S S S S S S S S S S S S S S S S

•

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

TABLE IV-36

Axial Location: 152 mm (6.0in.) Run No.: 36 Test Date: 10/13/82

Flow Condition: 1

 $x/R_0 = 2.498$

Geometry: 2

		OF POOR QUALITY
z	をあるないない。 ののののなっているのののののののののののののののののののののののののののののののののののの	
Kyf	2	
8vf ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
σντ m/s	000000000000000000000000000000000000000	
Bvf	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
K	0. 0.4444044444444444444444444444444444	•
SF	# # # # # # # # # # # # # # # # # # #	
g.	00000000000000000000000000000000000000	
9 4	2-23224-003232323232323232323232323232323232323	
×	0042440000004440044400 40405000000000000000	
S _V	11111 11111 1 124'0' 100' 1111 1 1 1 1 1 1 1 1 1 1 1 1 1	
' v' B/S	10020000000000000000000000000000000000	
s/e	0070R-4740R044470A7R4440A MCA4727R44740A7447AR447AR447AR44 00000000000000000000000000000000000	
r/R _o	11111	
r man +(0=0) -(0=180)	23-25-25-25-25-25-25-25-25-25-25-25-25-25-	
P _c No.	するですりちおとの やかをてまれんほとり 5 からできるこう くんごうちょうしょうしょうしょう	

MASS AND MOMENTUM JURBULENT TRANSPORT EXPERIMENTS

TABLE IV-37

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Run No.: 37 Axial Location: 203mm (8.0 in.) Test Date: 10/14/82

Geometry: 2 Flow Condition: 1

 $x/R_0 = 3.331$

6		ORIGINAL PAGE 15
25	00000000000000000000000000000000000000	OF POOR QUALITY
Kut	2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	
S	### ## ## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
o _{wf}	00000000000000000000000000000000000000	
Ruf	11 111 11 11 11 11 11 11 11 11 11 11 11	
wf m/s	0.000000000000000000000000000000000000	
K Fe	44WW4W4NWNWAW4TLWWWW44NWW 20084046440900WWW48WWW-6w09 52LU9WLUGODEENEWD044U00WLOWA	
Š	4 t t t t t t t t t t t t t t t t t t t	
ق	00000000000000000000000000000000000000	
9-4	101111333353511111111111103333 20333344448890000000000000000000000000000	
*	44m0um tumm45L40un04mmum8mm 504nmum1060L40un0420mm14000 0L topun001B000un10441500000cc0b	
a [™]	111-11-12-11-11-11-11-11-11-11-11-11-11-	
N s/st	2222 2222 2242222222222222222222222222	
W s/m	100 100 100 100 100 100 100 100 100 100	
r/R _o	11111111111111111111111111111111111111	
r nun +(0=90) -(0=270)	1111111	
Pr No.	ままままま ころろろろろろろう カイガラ しょうしょう しょうしょう しょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 13

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

TABLE IV-38

Axial Location: 203 mm (8.9 in.) Run No.: 38 Test Date: 10/14/82

Flow Condition: 1

Geometry: 2 $x/R_0 = 3.331$

		OF POOR QUALITY
z	うきちゅう ちゅうりゅうけん ちゅうりゅう ひゅうりょう ちゅうきょう ちゅうきゅう ちゅうきゅう ちゅうきゅう ちゅうきゅう しょうきょう しょうきょう しょうしょう しゅうしゅう しゅう	
K	######################################	
Svf.		
σνf m/s	00000000000000000000000000000000000000	
Ryf	00000000000000000000000000000000000000	
vf m/s	00000000000000000000000000000000000000	-
Kŗ	44242222222222222222222222222222222222	
SF	24004000000000000000000000000000000000	
÷4	00000000000000000000000000000000000000	
•		
14 ²	cwcvvvwqwcvqbwcwoobqvwwcvv vevvywcuxbvyxmvquqooqqqvywu vwvcubbvvqqqqqvywu	
. Sa	11.20 11	
v'v m/s	22.22.22.22.22.22.22.22.22.22.22.22.22.	
V m/s	11111 1111111111111111111111111111111	
r/Ro	1111 11111 0000000000000000000000000000	A LEGICAL PROPERTY OF THE PROP
r nun +(0=0) -(0=180)	CUSTON CONTRACTOR CONT	AND MONEY
Pr.	のちはよりできてするのかよう Cとすいちゅう 5 をそく とうかくさくさくとしましましまし	V V

AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

R83-915540-26

ORIGINAL PAGE 15 --OF POOR QUALITY

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-40

Test Date: 11/2/82

Run No.: 40

Axial Location: 203 mm (8.0 in.)

Flow Condition:

ocometay.	
1	3,331
	11
,	<u> </u>
	x/R
i	

-	OF FOOR GOVERN	
2	444444444 9999999999999999999999999999	
Kuw		
Sur	mit ilit woi	
0 uv		
R unv	00400000000000000000000000000000000000	
uw m ² /s ²	00000000000000000000000000000000000000	•
*	ишшшшшшшшшшшшш - ************************	
α×	1111 11111 11111 11111 1270 120 100 100 100 100 100 100 100 100 10	
w's	7	
ix s/si	L44W44W444 W44W4W444 W44W4W4WH W8GC0WW4WH	
, K	404WUUWWWWWW 00xW000-00-00-00-00-00-00-00-00-00-00-00-00	
Su	111 1111111 -000000000000000000000000000000	
u, m/s		
11 B/S		
r/Ro		
r mm +(0=90) -(0=270)		
P.c.	MUMPO GO	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

TABLE IV-41

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 11/3/82

Run No.: 41

Flow Condition: 1

$x/R_0 = 3.331$
بر اا
ص
×
-
$\hat{}$
(8.0 in.
3.0
203
tíc
Location:
al]
Axial
-

		OF POOR QUALITY
z	3M=CCC=20 3M0008304 4444440	
Kuv	######################################	
ang	II HAMA SUNCENTONO CHOSMITO	
ouv m ² /s ²	433000000 43300000000000000000000000000	
Ruw	- 00 4 - 00 8 - 00 8 - 12 10 - 12 10 - 20 6 - 20 6	
 uv m ² /s ²		
Κ _V	2008 8031 8031 8031 8031	
ss.		
v° m/s	2622 2622 2622 1063 147 147	
V m/s	1111 11 0000000 0100000000 010000000000	
K _u	wwqvqvwq owryrcwn crarceoo	
'ns	12.8.2.1 12.8.2.1 12.8.2.1 12.8.2.1 12.8.2.1 12.8.2.1 13.	
u s/ss	20000 - 1000000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 1000	
U S/m	0 4 0 M 0	
r/Ro	111 14 2000000000000000000000000000000000000	
in +(0=0) -(0=180)	1112 1122 1132 1132 1132 1132 1132 1132	
 	~いるいい	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS TABLE IV-42

Run No.: 42 Test Date: 11/4/82

Axial Location: 305 mm (12.0 in.)

Flow Condition:

Geometry:

•		OF POOR QUALITY
54	44444444444444444444444444444444444444	
Euv		
Buv	1010 -1 1 1 1 1 1 1	
ouv m2/s2	00000000000000000000000000000000000000	
Ruv	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
uv m2/s2	1 1 1 1 1 1 1 1 1 1	
Ķ	20000 410100000 5100000000000000000000000	
∞ 2	11111	19
s/w	22211121112222222222222222222222222222	
V m/s	11111 11111 11111 1 1 1 1 1 1 1 1 1 1	
Ku	00000000000000000000000000000000000000	
S _u	00	
u s/m	10000000000000000000000000000000000000	
il s/m		
r/Ro	######################################	
r num +(0=0) -(0=180)	#C44111100000000000000000000000000000000	
P _t No.	気中をとそりら日と今気中をとすりられた今気中をとすることででしてとことできまままままます。	

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-43

Run No.: 43 Test Date: 11/4/82

Axial Location: 305 mm (12.0 in.)

Flow Condition:

 $x/R_0 = 4.996$

Geometry:

	OF POOR QUALITY	
2	444444444444 0000000000000000000000000	
K _{UM}	さま ままま まままままま のススプーの心の名のり目のスキアのの 「のらんかった」。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	NAS3-22771)
S. S.		
0 uv m ² /s ²	00000000000000000000000000000000000000	er (Contract
R use		Research Center
uw m2/s2		Levis Rese
د ر	CM4CMMmmmmcdmmddccccccccccccccccccccccccccc	Center/NASA
ω >	1	Research Cen
v. s/m	20100000000000000000000000000000000000	
N N		d Technologies
K	mumumuaucumucumaau 4.5.4.4.5.2.2.2.4.4.2.2.4.4.0 A A A A A A A A A A A A A A A A A A A	United
n _S		EXPERIMENTS
"u"	0.110111111111111111111111111111111111	TRANSPORT EXP
ll m/s	CHUCACAU ACACAU ACACACAU ACACACAU ACACACAU ACACACAU ACACACAC	
r/R,	0.000 0.000	HOMENTUM TURBULENT
r ma +(6=90) -(9=270)		AND HOMEN
Pr.		HASS

ORIGINAL PAGE 19

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-44

Axial Location: 406 mm (16.0 in.) Test Date: 11/4/82

Run No.: 44

Flow Condition: 1

 $x/R_0 = 6.661$

		ORIGINAL PAGE 150 OF POOR QUALITY	• •
*	444444444 0000000000000000 4W0L4N0NN4NOL		
Kusy			(1112
S uns	WIIII CHICAII		ct NAS3-22771
0 us	00000000000000000000000000000000000000		r (Contract
R uw	11111111111111111111111111111111111111		cch Center
un m ² /s ²	00000000000000000000000000000000000000		United Technologies Research Center/NASA Lewis Research
*	030mm0dma40mm0dm 040m00mm04m004 0000m00m00dm		r/NASA Le
ω×	######################################		rch Cente
w. m/s	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ics Resea
x s/ea	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Technolog
, K	4WUWLWWAAWAW 6-1-WLOGGC-101-1 6-1-WLOGGC-101-1	-	United
n _S	20000000000000000000000000000000000000		HMENTS
s/ m	0010 0045 0079 0079 0079 0070 0070 0087 0087		OKT EXPER
1) m/s			HOMENTUM TURBULENT TRANSPORT EXPERIMENTS
r/Ro	11111 52440 54440 52540 6444 52540 6444 52540 5544		UM TURBUL!
r +(0=90) -(0=270)			AND HOMENTI
Pt.	をときりられるらからごう		MSS A

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE IV-45

AXIAL AND RADIAL VELOCITY DATA AND COF LLATIONS

Run No.: 45 Test Date: 11/4/82

Axial Location: 406 mm (16.0 in.)

Flow Condition:

 $x/R_0 = 6.661$

Geometry:

z	444公本441公本4 おおもりものなななとこのは ものものななななとこのは ものならまなられてで
Kuv	
Suv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o uv m2/s2	0.000000000000000000000000000000000000
R ux	40000000000000000000000000000000000000
w m ² /s ²	
Ž	24440000000000000000000000000000000000
v ã.	1
v* m/s	12.49. 12.49. 12.49. 12.49. 13.49. 13.49. 13.49. 13.49. 14
V m/s	111 11 11 11 11 11 11 11 11 11 11 11 11
Ku	**************************************
n _S	1.04.1. 1.04.1
u, m/s	113 113 113 113 1148 1148 119
ll s/m	* * * * * * * * * * * * * * * * * * *
r/Ro	111111 :
r nm +(0=0) -(0=180)	111111 C40841140404 C408014884 C2408014884 C740881 C74

ORIGINAL PAGE 18 OF POOR QUALITY

R83-915540-26

2

CORRELATIONS DATA VELOCITY RADIAL

12/1/82 Axial

51

r mm +(U=0) -(0=180)

a ž

Run No.:

Flow Condition:

833

x/Ro

 $\frac{1}{1}$ Handage $\frac{1}{1}$ H TINOUNDE LIN II HAYN TINOUND TONOUND T Š σ_{wv} m²/s² 3 wv m²/s² できることでいっていいというということになることできることできることであることできることであることであることできることできない。 ž CLANDVADUCCIALUMDINO SACICIDA ANA -> \s \vec{A} พุ่มบุญสุมมุมกุลมุภามทุกทุมทุนทุน พุ่มบุญสุมมุมทุนทุ ·× s/m

EXPERIMENTS TRANS PORT TURBULENT MOMENTUM **A**

MASS

(Contract Center/NASA Technologies United

NAS3-22771)

ORIGINAL PAGE IS OF POOR QUALITY

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-47

Run No.: 47 Test Date: 12/7/82

Axial Location: 25 mm (1.0 in.)

Flow Condition:

 $x/R_0 = 0.416$

Geometry:	7
оше	1
Čec	à
	Geo
Η	-

	OF POOR QUALIT	Y
z	44444444444444444444444444444444444444	11 2 11 ALVEN TO THE P - 12 - 14 - 15 - 1
Kev	นนน นนนนนนน พ.น.ส.ตองอะบามนายน ๑๓ ตาน-บายนายนะ ค.น. ส.นามนายนายนายนายนายนายนายนายนายนายนายนายนายน	!
AM _S	1	
σwν m2/s2	00000000000000000000000000000000000000	
Ruv	111 0000000000000000000000000000000000	
wv m ² /s ²	MAHBUKOOOHOOOBU MAHBUKOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOO	
Κ	4 ม4มหนุนม44ม4หนุน หม4-คบจักมหนุนมตะจ บาทหนุน ต่อจังบนจังม	
ď	1	
v° m/s	######################################	
V m/s	0000-1000000147 0000-100000000000000000000000000000000	
Υ _ν	naauuaarnvarauu aonvuomomamnuv oouonveedauadev	
S _W	1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
s/u	a deligente de la constant de la con	
s/#	0000WV3000000N3 0000W0000000000000000000000000	
r/R _o	111111 0	
r mm +(0=0) -(0=1:80)	44646464646666666666666666666666666666	
å å	HUMADAVOHITANA HHHHHH	i

ORIGINAL PAGE IS OF POOR QUALITY

R83-915540-26

TABLE IV-48

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 12/7/82

Axial Location: 25 mm (1.0 in.)

Run No.: 48

Flow Condition: 1

Geometry: 2

 $x/R_0 = 0.416$

_	
. 2	00444444 440000000 004000000
Kyv	0.00 mm
\$ 3	4414 WAH 040040 040040040
0 wv m2/s2	00-00-000 00-00-000 000-00-00-00-00-00-0
R V	111
wv m ² /s ²	111 1 0000000 00010000 0001000 0001000 0001000 0001000 0001000
. ×	
જે	1
* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	01000111 010001111 010001111 0100011111
V s/m	03.77.0-1-1 03.77.0-1-1 04.07.0.20-1 28.42.50.77.0
₹	24 wecce week we
n ⁿ s	2
· A s	01m2um2cc 040x0x444 01m2vc4400
W W	1 000000000000000000000000000000000000
r/Ro	3.440.35C.89 2.40.36C.89 2.40.34C.38C
r num +(0=0) -(0=180)	
P. No.	משחש שרשה

MASS AND MOMENTUM TURBUIENT TRANSPORT EXPERIMENTS

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-49

Axial Location: 25 mm (1.0 fn.) Test Date: 12/7/82

Run No.: 49

Flow Condition: 1

 $x/R_0 = 0.416$

Geometry: 2

) 	OF POOR QUALITY	
2	7744444 440000000 Caudamaman	
, A	mm	
A.G	44 1 14 4	
0 wv	00-100-100-100-100-100-100-100-100-100-	
R	######################################	
w m ² / ₅ 2	00000000 00000000 000000000 000000000 0000	
K.	4mの24mより2m ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ŝ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
' v 8/8	######################################	
y 8/8		
X.	44w-wp-www. 	
*S	11.11.000 10.12.13.000 10.12.13.000 10.12.13.000 10.12.13.000	Sometime of the Control of the Contr
* × × ×	1004000 1004000 10041-100 2005100	
s/a	0.000000000000000000000000000000000000	TAME TO A MANAGEMENT
r/Ro	1111111 	and Hadik.
r BBB +(0=0)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MILLIANDING CO
F.		MASS AND

z

ORIGINAL PAGE IS OF POOR QUALITY

DATA AND CORRELATIONS VELOCITY RADIAL AZIMUTHAL AND

in.) (2.0 Run 51 Test Date: 12/10/82 Location;

Axial

No.

Flow Condition:

x/Ro

Geometry:

0.833

THEORIGINAL THEORY OF THE CONTROL OF Š S 0000000400000000 nunuunntonttiittiinn no44ttiinno4tii4ttiinn σ_{wv} m^2/s^2 3 1 1 1 1 ≩ 꿏 Š Managoulcauthauloga Bookersonauthauthau Hammanauthauthauthau Hammanauthauthauthau Hammanauthauthauthau > \s 0000000-0000000 0110-3110-0011-61-3 61-3110-411-01-41-110000 ₹, Š `**≯** /€ ≯ × (0=180 r (0=0) On-cididanon-diduan HILLI HHANDONO ILHHANN HONONONO ILHHANN HONONONO

EXPERIMENTS TRANS PORT TURBULENT MOMENTUM ğ

Center/NASA Technologies United

(Contract

Research

ಸರ್ಥಿಚಿಕ್ಕುವಿದ್ದಾರ್ಥಿಗಳು ಕ್ಷಾಪ್ರಕ್ಷಣೆಗಳು

ORIGINAL PAGE 12 OF POOR QUALITY

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-51

Test Date: 12/10/82

Run No.: 51

Flow Condition: 1

Geometry: 2

		OF FOOR QUALITY.	
	Z	पंचर । वार्षंच वार्षंच वार्षंच वार्षंच ए ए ए ए ए ए ए ए ए ए ए ए ए ए ए ए ए ए ए	
	Kav	เราะเบลเลยเลย และ เลย	
	Š	אר אישר שיין שיי איי איי איי איי איי איי איי איי איי	
• •	ow m ² /s ²	3-nn-00144464n44m	
	R _{WV}	64404004004000000000000000000000000000	
Axial Location: 51 mm (2.6 in.) $x/R_0 = 0.833$	WV m ² /s ²	00000000000000000000000000000000000000	
	K.	nathunathannatao chaonntachachacha chaonntachachachacha chaonntachachachachachachachachachachachachacha	
	જે		
	s/u	Suddendendenden Suddendendenden Suddendendenden	
	V m/s	00000000000000000000000000000000000000	1
	K.	n3f3b31.f344n44b4bbb いっっこののでいなないせんからい。 いっっこののでいないいでしていってい いもnb4のでn3b1/nb4c340	
	Sw		1
	.≱ ≅/⊞	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	\$ 7 €		
	r/R _o	1	
	r mm +(0=0) -(0=180)		
	P. So.	HUMBANOROHU4BAN	
		3 A	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-52

Test Date: 12/13/82

Run No.: 52

Axial Location: 51 mm (2.0 in.)

Flow Condition: 1

Geometry: 2

 $x/R_0 = 0.833$

		OF FOOR GOVERN
z		
, <u>\$</u>		
Byv		
0 wv	00000000000000000000000000000000000000	
Rwv	1 11 11 00 00 00 00 00 00 00 00 00 00 00	
WV m ² /s ²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	######################################	
. જે	11111111111111111111111111111111111111	
. > III / S:	#10/14240000 #10/142400000	
> s/si	00000000000000000000000000000000000000	
X.	waawwwaawwaaw 	
S ^a	11 1111 11 10 2011-04-01-014-01 2011-04-01-014-01 21-04-01-01-01-01-01-01-01-01-01-01-01-01-01-	
w' m/s	220 040 040 040 040 040 040 040 040 040	
W W w	4 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
r/R _o	03-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
r +(0=0) -(0=180)	1 0440WUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	
P r.	またさまり 日本の	

MABS AND MOMENTUM TURBUTENT TRANSPORT EXPERIMENTS

TABLE IV-53

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 12/13/82

Run No.: 53 Axial Location: 51 mm (2.0 in.)

Flow Condition: 1

 $x/R_0^{\dagger} = 0.833$

Geometry: 2

		OF-POOR SOMETT
2	44444444444444444444444444444444444444	
3	424 424 424 424 424 424 424 424 424 424	
Page 4	######################################	
σw m ² /s ²	000-1-00000 000-1-000000 000-1-000000000	
Ruv	1111	
wv m²/s²	000699	
%	44wwwwwwwww Louchtwoowk Yourowhaliuw	
Š	11111111 244wco	
v s /at	22	
> s/#	04144444444444444444444444444444444444	
×.	44WWW444W44 6-WLVWWWW93 	
v.³	7.0002 7.0002 7.0005 7.0002 7.0002 7.0002 7.0002	
, o	00000000000000000000000000000000000000	
r/Ro	11111111 244007410004 040004140	
1(0-0)+	11111111 220004211111111111111111111111111111111	

R83-915540-26

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-54

Axial Location: 102 mm (4.0 in.) Test Date: 12/15/82

Run No.: 54

Flow Condition: 1

 $x/R_O = 1.665$

7
• •
eometry
ťħ
_

		OF POOR QUALITY
Z	क्षा विकास क्षेत्र क्षा विकास क्षेत्र क्षा विकास क्षेत्र क्ष्य क्ष्य क्ष्य क्ष्य क्ष्य क्ष्य क्ष्य क्ष्य क्ष्य	
K	หลดนาง ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ	
Swz	Lab and da a	
0 wv m ² /s ²	00000000000000000000000000000000000000	
Ruv		
wv m ² /s ²		
Kv	มเล่มเล่นเล่นเล่นเล่นเล่นเล่น คนอนจนกระทุกของกรุงสน อนอนจนกระทุกของเล่น	
Š		
v, m/s	0.000000000000000000000000000000000000	
۷ تاری	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
X.	บบสบงสุบบทเทษพบบบ " ถึงสุบบอตตเจนองจุสุน เลขบานของเพบบอบจาเต	
·5 ⁷	I-	
s/m		
\$/# **		
r/R _o	0 HULLA 411,000 HURLA 6 HURLA	
r mm +(0=0) -(0=180)	Hedden Hell Greden Hedden Gredenen Hedden Hedden Hedden Hedden	
R F	르(477年B) 271(1000 = (1474) 271(프로프트	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

	!
TABLE IV-55	144 741
TABLE	VEIO
	RADTAT
	AND
	AZIMUTHAL AND RADIAI WEI OCITAL PARA

Geometru. 2	
Flow Condition: 1	$x/R_0 = 1.665$
Run No.: 55	2 mm (4.0 in.)
Test Date: 12/15/82	Axial Location: 102 mm (4.0 in.)

		OOK GOALITY
24	44444444444 99999999999999999999999999	
	0-1-4@m@4M-mm@@	
<u>.</u>	# 444 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	
Swv		
4	1 m mmm m (4)	
σw m ² /s ²	00000000000000000000000000000000000000	
5 7		
	30000000000000000000000000000000000000	
2	000000000000000000000000000000000000000	
	CHAMONEMAN	
1 29	WWW. CONTROLLE	
w m ² /s ²	000000000000000000000000000000000000000	
	111	
ج.	70400 30 10 00 38 88 0 01140 1 30 14 1 1 80	
*	MUNNHUNNUNNUN	
	maaan xmaacmoos	
જે	#0000000000000000000000000000000000000	
	72500000000000	
> 1	NULTUNANANANANANANANANANANANANANANANANANANA	
	Out of the American and	
> °	00000000000000000000000000000000000000	
> 'a		
	Lo o a a company o a a a a a a a a a a a a a a a a a a	
2	๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
	00010010000000000000000000000000000000	3
<i>σ</i> *	11 111111	
	1904-105-1-0000	
3 %	42444444444444444444444444444444444444	

	00000000000000000000000000000000000000	
3 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ī
r/R _o	00=0m400004m0000	
H	11	R
(0-0) (6-180)	0-000000000000000000000000000000000000	MONEYTON TURBULENT
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NONONONO NO	
 		
<u> </u>	生ままま できまます	MAB 3

United Technologies Research Center/NASA Levi

①

AZIMUTHAL AND RADIAL VELOCITY DATA AND CORRELATIONS TABLE IV-56

Test Date: 12/15/82

Run No.: 56

Axial Location: 102 mm (4.0 in.)

Flow Condition

Geomet	
4	-
	279
•	٧
CTOIL	4
Ä.	-
_	

T		
25	44444444 00000000000000000000000000000	
Š		277.)
8.	M4WWWWWDOOD WCAWWWWWDOOD	ct NAS3-22771
0 wv m ² /s ²	000000000 300000000 4040000000	r (Contract
2	00000000 00000000000000000000000000000	ch Conter
w m ² /s ²	00000000 00000000 000000000 0000000000	wis Research
	00000000000000000000000000000000000000	r/NASA Le
જે	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Technologies Research Center/NASA Levis
, v s/m	20000000000000000000000000000000000000	ies Resea
v s/a	11111111111111111111111111111111111111	Technolog
ž	M44MMMM4MM C 9 0 4 5 2 3 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	United
A's	1 11 10 10 10 10 10 10 10 10 10 10 10 10	TAENTS
, v m/s	り で で で で で で で で で で で で で で で で で で で	TRAMBRORT EXPERIMENTS
s/a	* * * * * * * * * * * * * * * * * * *	- (
r/R _o	1111111 0400000000000000000000000000000	M TURBULENT
r ma +(0-0) (0=180)	1111111 111111111111111111111111111111	D MONERATUM
P _r		MABS AND
	101	_] =

R83-915540-26

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 2/28/83

Axial Location: 5 mm (0.2 in.)

Run No.: 59

 $x/R_0 = 0.083$

Flow Condition:

Swirler Orientation, $\phi = 75$ deg

		or POOR QUALITY
Z	40000000000000000000000000000000000000	
Kuza		
Sur	MUL IVM I FILME SWOOMSONWOOD TO SWOOMSONWOOD TO SWOOMSONWOOD TO SWOOMSON TO SWOOMSON SWOONSON SWOOMSON SWOOMSON SWOOMSON SWOOMSON SWOOMSON SWOOMSON SWOOMSON SWOOMSON SWOONSON SWOOMSON SWOONSON SWOONSON S	
° uv m ² /s ²	40004400004 640004000004 6400044000	
Ruw	40004010001000000000000000000000000000	
uw m ² /s ²	0.000000000000000000000000000000000000	
حِدِ		
ω [*] ·	111 11111111 111 144421101000000000000000000000000000000	

W m/s	1.0022 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022	
, x	/// ##################################	
Su	1.050 1.050	
• u ≈/m	######################################	
11 m/s	1-11-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
r/Ŗ _o		
r mes +(0=90): -(0=270)		
Pr. No.	まましました日本の名からものを見てものものものものものものものものものものものものものものものものものものもの	

MASS AND MOMENTUR TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-60

Run No.: 60 Test Date: 3/1/83

Axial Location: 5 mm (0.2 in.)

 $x/R_O = 0.08$

Swirler Orientation, $\phi = 80$ deg

Geometry: Flow Condition: 1

	OF POOR QUALITY	
Z	70004000000000000000000000000000000000	
Ku		
Suv	11 min 11 m nim min 1". Campunandarinanananananananananananananananananan	
σuw m ² /s ²		
R use	0.000000000000000000000000000000000000	
uw m ² /s ²	1	
Ž.	24/20/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	
α×		
. ≽ /e:	400	
W E/E	2126-101028341002525414 2126-101028341002525414 2126-1010283410020202888	
Ku	02000000000000000000000000000000000000	
n _S	0.0	
u s/m	######################################	
:: :2/æ	100 - 100 -	
r/Ro		
r nm +(θ=90) -(θ=270)	0214400 600222244022224 021400402000211002002 021400400000011002000	
P _E No.	MN100840N4MN100840N4MN1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

TABLE IV-61

Axial Location: 5 mm (0.2 in.) Test Date: 3/1/83

Run No.: 61

 $x/R_0 = 0.083$

Flow Condition: 1

Swirler Orientation,

Name	
Name	
## ## ## ## ## ## ## ## ## ## ## ## ##	
## ## ## ## ## ## ## ## ## ## ## ## ##	
#44.000.000.000.000.000.000.000.000.000.	
#441050000000000000000000000000000000000	
→ カムなりごw~いのw~ひゅつゅう。 カスタンは、「カスタンは、カスタンは、「カスタンは、「カスタンは、「カスタンは、「カスタンは、「カスタンは、「カスタンは、「カスタンは、「カスタンは、カスタンは、カスタンは、「カスタンは、カスタンは、「カスタンは、カスタンは、カスタンは、カスタンは、カスタンは、カスタンは、カスタンは、カスタ	
8	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
# # # # # # # # # # # # # # # # # # #	
S COUNT & COMMUNICAL WANTE CONTRACTOR CONTRA	
3 3	
100 100 100 100 100 100 100 100 100 100	
#	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0+ (0=0) -	
T S HUMANOHEMANOH	

MASS AND MOMENTUR JURBULENT THANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Axial Location: 5 mm (0.2 in.) Test Date: 3/1/83

Run No.: 62

Flow Condition:

Geometry:

Swirler Orientation,

-ZU		OF POOR QUALIT	Y
	25.		7°7°
	Kust	40000000000000000000000000000000000000	
90 deg	Am S	1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
on, φ=	σuν m ² /s ²	0.000000000000000000000000000000000000	
ientati	R us	1 1 1 1 1 1 1 1 1 1	
Swirler Orientation,	uw m ² /s ²	00000000000000000000000000000000000000	
Swi	جِدِ	404m000mmm4mm00mm 	
0.083	ω×	1 11 111 1 4 2 2 2 4 4 5 5 4 4 5 5 4 4 5 5 6 7 4 5 5 6 7 4 5 6 7 4 5 6 7 4 5 7 4 5 7 4 5 7 4 5 7 4 7 4 7 7 7 7	
II	s/m	20000000000000000000000000000000000000	
x/R _o	N s/a		
(n.)	, K	20000000000000000000000000000000000000	
a (0.2 ±	Su	11111111 111 111	
n: 5 mm	.n s/E	44-00000000000000000000000000000000000	
Location	11 11/5	1111111 000000000000000000000000000000	
Axial	r/R _o	25.2.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	
	r +(0= 90) -(0= 270)		
ĺ	P _t No.	HCMARNOLOGO-COMAR	

MASS AND MOMENTUR TURBULENT TRANSPORT EXPERIMENTS

TABLE IV-63

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

(0.2 in.) Test Date: 3/1/83 Axial Location: 5 mm

Run No.: 63

 $x/R_0 = 0.083$

Flow Condition:

Geometry:

deg Swirler Orientation,

	•
×	
Kun	4 MANUM MAN ONOMOROUMO ONOMOROMOROUMO ONOMOROMOROMO ONOMOROMOROMOROMO ONOMOROMOROMOROMO ONOMOROMOROMOROMOROMOROMOROMOROMOROMOROM
S. Law	1 1111 1
ouw m ² /s ²	4m-000000000000000000000000000000000000
Ruw	
uw m ² /s ²	1 1111111 00000000000000000000000000000
حِر	
ω¥	11 11 11 11 11 11 11 11 11 11 11 11 11
'x' = x'	1
s/m	1
K _u	######################################
S _U	
an #	0.000 0.000
ii m/s	14.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
r/R _o	2222 2222 2222 2222 2222 2222 2222 2222 2222
r +(0=90) -(0=270)	0 VC V C A C A C A C A C A C A C A C A C
P. S.	NAWNHOW GOOD GOOD HOUSE

MASS AND MOMENTUR TURBULENT TRANSPORT EXPERIMENTS

(Contract NAS3-22771) United Technologies Research Center/NASA Lewis Research Center

ORIGINAL PAGE 18 OF POOR QUALITY

R83-915540-26

TABLE IV-64

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Axial Location: 5 mm (0.2 in.) Test Date: 3/2/83

Flow Condition: 1 Run No.: 64

 $x/R_0 = 0.083$

Swirler Orientation, $\phi = 70$ deg

2,	74000000000000000000000000000000000000	
Kus	HAMPO WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWANA WARDOWA	NAS3-22771)
Ari _S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
om ² /s ²	######################################	er (Contract
R uw		arch Center
uw m ² /s ²		Levis Research
K,	もましたものは、またのでは、これでは、これでは、これでは、これでは、いっぱいできる。 いっぱい はいい はい は	
α×	11111111111111111111111111111111111111	Research Center/NASA
w'w	######################################	1
W m/s	1 11 303022222C004C100002 224022C24440C424W2C0 5C202522A4622EEEEEEEE	Technologies
X.	Wideladewwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	United
Su	-	EXPERIMENTS
u" m/s		TRANSPORT EXPI
E S/E		
r/Ro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TUM JURBULENT
r nun +(0=90) -(0=270)		AND MOMENTUM
Pt No.	Namanananan Obergoneman Obergoneman	MASS

ORIGINAL PAGE DI. OF POOR QUALITY

R83-915540-26

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 3/2/83

Run No.: 65

Flow Condition:

Geometry:

65 11 0 Swirler Orientation,

0.083 Axial Location: 5 mm (0.2 in.)

K

An S	
σuw m ² /s ²	
Rus	
uw m ² /s ²	1111
7	0.04m00044m40m00m00mx0tc2c4t4
ω [™]	11
m/s	
× /m	
, R	Cuwcuwcwouduwcholooudod
Su	1
°u s/⊞	
== S 	######################################
r/R _o	2.224.24444444444444444444444444444444
r mm 0=90)	

MASS. AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

(1773-22771) United Technologies Research Center/NASA Lewis Research Center (Contract

からかをとすりらのムーリュッをてもっちらんはくりらかもだてとろころころしてすますますに

ORIGINAL PAGE IS OF POOR QUALITY

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-66

Test Date: 3/2/83

Axial Location: 5 mm (0.2 in.)

Run No.: 66

Flow Condition: 1

 $x/R_0 = 0.083$

Geometry:

Swirler Orientation, $\phi = 60$ deg

2	
Kus	
S _{uv}	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ouw m ² /s ²	
R unv	111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
uw m ² /s ²	11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
₹.	ひなまれるみなるななるとのなる。 うっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱん ひまん ひまん ひまん ひょうしゅん ひょうしゅん ひょうきょう マーチョン マーチ ローグ ファーグ ファーグ ファーグ ファーグ ファーグ ファーグ ファーグ ファ
ω ² .	11
m/s	
3x /8	- courre ou un o cou o de cou o de courre de c
K	WUWURW & WUWWWWW
S _u	11111 14111111 144027-65-11024-14 144027-65-11024-14 14403-15-1103-1103-1103-1103-1103-1103-1103
u s/m	
: s/i	
r/R _o	
r mm +(0=90) -(0=270)	0 C O U C C C C C C C C C C C C C C C C C
Pr.	mamaman engangerangerangerangerangerangerangeran

United Technologies Research Center/NASA Levis Research Center (Contract NAS3-22771)

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Levis Research Center (Contract NAS3-22771)

MASS AND HOMENTUR TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS

R83-915540-26

TABLE IV-67

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Run No.: 67 Test Date: 3/2/83

Axial Location: 5 mm (0.2 in.)

 $x/R_O = 0.083$

Flow Condition: 1

Geometry:

deg
55
.‼ • ⊕
Orientation,
Swirler

Z	MADDADADADADADADADADADADADADADADADADADA
Kus	
Suw	1
σuw m ² /s ²	######################################
R uw	
-uw m ² /s ²	
K.	######################################
ω [*]	11: T:
W'r m/s	www.uccccccurr waycoccccccccccccccccccccccccccccccccccc
W m/s	140x20000000 140x20000000 1400000000000000000000000000000
K _u	Cuuuu-40446-uuuu 1
, Su	1111 1111 00000000000000000000000000000
u' m/s	444-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
:: :s/::	
r/R _o	2000 2000 2000 2000 2000 2000 2000 200
r man +(0=90) -(0=270)	
P. R.	ままままままれるできる。

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS OF POOR QUALITY

R83-915540-26

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS TABLE IV-68

Axial Location: 5 mm (0.2 in.) Test Date: 3/3/83

Run No.: 68

 $x/R_O = 0.083$

Flow Condition: 1

Swirler Orientation, ϕ = 50 deg

Geometry:

2	04400000000000000000000000000000000000	
Kus	20000000000000000000000000000000000000	
An S	41111111111111111111111111111111111111	
σuw m ² /s ²		
Ruw	11111 11 11111 11 11111 1 1 1 1 1 1 1	
uw m ² /s ²	. 2422222222222222222222	
2	Zumu4m4nu4mumum4naやや14422 1	
w≯	1	
** ** /#		
W m/s	1111 2427	
, X	######################################	
S.	11 11 11 11 11 11 11 11 11 11 11 11 11	
°u ≈/m	1	
II m/s	######################################	
r/Ro	27,22,244444444444444444444444444444444	
r ====================================	TO T	
P. S.	日本日本日本日本日本のことの方面できることのの日本の中で、日本日本日本日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	

NAS3-22771)

(Contract

Center

Research (

Lewis

Center/NASA

TRANSPORT

MOMENTUM TURBULENT

ORIGINAL PAGE 18 OF POOR QUALITY

RADIAL VELOCITY DATA AND CORRELATIONS Condition: Flow 3/10/83

Orientation, Swirler

K UV uv m²/s² \$ ջ

0.083

(0.2

Ś

Location:

r mm +(0=0) -(0=180)

75

Š

をんそれん おんけ てかちどうのんせんか らかい てまわられるい つからてきをしてんこくこくこく ごうまままままままま

115

なまなままままなろうできまるまでいまままままで、サロローきょうでいるできます。 ゆうつうぎょれいしゅういからでゅうきょうしょうしょうしょうしょうしょうしょうしゅうしょうしゅうしゅうしょうしゅうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょう

- $\sigma_{\rm uv}$ m^2/s^2

deg 20

0

TABLE IV-70

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Run No.: 70 Axial Location: 5 mm (0.2 in.) Test Date: 3/11/83

 $\mathbf{x}/R_0 = 0.083$

Flow Condition: 1

Geometry:

Swirler Orientation, $\phi = 55$ deg

		•
2	MUNUNGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
Kav		
Buv		
σ uv m ² /s ²		
Ruv	11111 00000000000000000000000000000000	
uv m ² /s ²	1111: 100000000000000000000000000000000	
Ž		
8v	######################################	
v' m/s	4	
V m/s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ku	40200004 0400400000 	
Su	1	
n / e		
II B/S	######################################	
r/R _o	02220200000000000000000000000000000000	
+(0=0) -(0=180)		

MASS AND HOMENTUM TURNULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 18

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

TABLE IV-71

Flow Condition: Run No.: 71 Axial Location: 5 mm (0.2 in.)

	·	OF POOR QUALITY
	z	UNUMARROROROROROROROROROROROROROROROROROROR
80	Kav	
= 60 deg	Suv	\(\frac{1}{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(\fr
ion, ϕ	0 uv	001000000000000000000000000000000000000
Orientation,	A W	10000000000000000000000000000000000000
Swirler O	uv m ² /s ²	00000000000000000000000000000000000000
Š	3	######################################
0.083	δž	1
X/K _C = 1	v s/m	20000000000000000000000000000000000000
^	v 8/m	0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
	×3	CUUULUNA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	S.	
1	u s/m	00000000000000000000000000000000000000
	E S/E	00.00000000000000000000000000000000000
	r/Ro	
	r nm +(0=0) -(0=180).	10000000000000000000000000000000000000
	P. Ko.	ちょうにはははははないのであるとしているものできるというながらなっているというのは、

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

TABLE IV-72

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

(0.2 in.) Test Date: 3/14/83 Axial Location:

r mm +(0=0). -(0=180).

Flow Condition:

Swirler Orientation, $\phi =$

	-	
2	: 	99999999999999999999999999999999999999
Kav	j	00400000000000000000000000000000000000
Suv		Lympicamountopportramountations
σ uv	-187 - II	00000000000000000000000000000000000000
Ruv		######################################
uv m ² /s ²		
Ķ		フラ 455 とう 455 もろうろうろ 457 カロ 457 と 175 で
δ ₂		1 1 1 1 1 1 1 1 1 1
, v s/m	_	2000%
V m/s		2.2.1.1.0.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.
	<u> </u>	4mmm04m4m04m4m04m4m04m1 - 0 vown
S _u ,	15	000004-04-1-0-04-04-06-06-06-06-06-06-06-06-06-06-06-06-06-
u s/m	.294	6.600.000.1.1.1.464.1.1.1.661.3.1.464.4.7.1.0000.1.802.4.4.1.1.0000.1.802.4.4.1.4.6.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.4.000.1.
II.		######################################
r/Ro	200	44mulumanununun nen oca – enun un

MASS AND HOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE 19 OF POOR QUALITY,

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Run No.: 73 3/14/83 (0.2 - E Test Date: S Axial Location:

Condition:

Geometry:

deg

70

0

Flow

Swirler 0.083 Ħ x/Ro

Orientation,

* \s\ \s\ \s\

> \square

7

Ž,

Sur

 $\sigma_{\rm uv}$ m^2/s^2

R uv

uv m²/s²

ž

Š

QWC4±RCWW4WWWWCWWCW QV@N@w600x-00-644C000 CU4w0x40-08---044C00 ᆲ

r nm +(0=0) -(0=180)

ᄺᇶ

S.

· n

あせよりらかとですわられんゆらかとかまきまままままま

119

(Contract NAS3-22771)

Center

Research Center/NASA Lewis Research

Technologies

United

TURBUL CAT TRANSPORT EXPERIMENTS

MOMENTUM

AND 1

MASS

ORIGINAL PAGE 18 OF POOR QUALITY

R83-915540-26

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Run No.: 74 3/15/83

Test Date:

Condition: Flow

0.083

u

(0.2

Location:

۳ ع ق

Swirler

deg 11 • Orientation,

Z, Kuv Buv ouv n2/s2 Ruv uv m²/s² :2 ₩, ž S. u s/m = s/m r/Ro r +(0=0) -(0=180) なりからなりとして、これできるなどのとうなりできません。

AND

Technologies United MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

NAS3-22771)

(Contract

Center

Research

Lewis

Center/NASA

ゆらかとだしのらののと少らかとともつららこりらかだだしとところとももももももしましまし

TABLE IV-75

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 3/15/83

Axial Location: 5 mm (0.2 in.)

Run No.: 75

Flow Condition:

 $x/R_O = 0.083$

Geometry:

Swirler Orientation, $\phi = 80$ deg

	OF POOR QUALITY	
2	######################################	7
, i		1111111
Buv		17727-137-7777
σ uv	2	er (Contract
R.ux	00000000000000000000000000000000000000	rch Center
m c	1	Lewis Research
K	2222222222222420042222222224 	Center/NASA 1
s ₂	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Research Cent
* ^ 8	######################################	
> \s	00000000000000000000000000000000000000	Technologies
K	71220 C 4400 0 10 10 10 10 10 10 10 10 10 10 10 10	United
S _u	11 11 11 11 11 1 2 2 1 1 1 1 1 1 4 4 4 4	RIMENTS
n s/a		TKANSPORT EXPERIMENTS
. II		ENT TRANS
r/R _o	0.444444444444444444444444444444444444	AND MOMENTUM TURBULENT
r nm +(0=C)	0-10-10-10-10-10-10-10-10-10-10-10-10-10	ND MOMENT
P _E No.	まれままままままままままままままままままままままままままままままままままま	MASS A

ORIGINAL PACE IS

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS TABLE IV-76

Axial Location: 5 mm (0.2 in.) Test Date: 3/16/83

Run No.: 76

 $x/R_0 = 0.083$

Flow Condition: 1

Geometry:

Swirler Orientation, ϕ = 85 deg

		OF POOR QUALITY
Z	NAKANSKO JERRANDO PARA NAKAN N	
Kuv		
Buv	w - wal wladdid id.	
ouv m ² /s ²	20000000000000000000000000000000000000	
Ruv	1	
uv m ² /s ²	00000000000000000000000000000000000000	
Ϋ́	RWWJWW ANGAWWA 4NWWWWWWA - 1000000 4 200000 4 200000 4 200000 4 2000000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 20000000 4 200000 4 200000 4 2000000 4 2000000 4 2000000 4 2000000 4 20000000 4 200000000	
83	23 24 24 24 24 24 24 24 24 24 24 24 24 24	
v • w/s	- MC	
V m/s	11.2.1.1.2.2.1.4.1.3.6.7.3.4.1.2.2.1.4.1.3.6.7.3.4.1.2.2.1.4.0.3.3.4.1.2.2.1.4.0.3.3.4.1.4.2.3.4.1.4.2.3.4.1.4.2.3.4.1.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4	
Кu	AUMUNAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	
S _u		
u s/m		
u s/m	640-04-04-04-04-04-04-04-04-04-04-04-04-0	
r/R _o	0.000000000000000000000000000000000000	
r mun +(0=0) -(0=180)	20222222222222222222222222222222222222	 -
P. No.	ととともとしてもしまりの代わりられるというなかをとしてもしまっているというないない。	

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ORIGINAL PAGE IS

TABLE IV-77

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 3/16/83

Axial Location: 5 mm (0.2 in.)

Run No.: 77

Flow Condition:

Geometry:

		วารายารายารายารายารายารายารายารายารายารา
	Kuv	01100000000000000000000000000000000000
90 deg	Buv	HOMENT OF THE TOTAL TOTA
. φ = w	σ uv m ² /s ²	00000000000000000000000000000000000000
entatio	K _{uv}	11111 11111 200-00-00-00-00-00-00-00-00-00-00-00-00-
Swirler Orientation	uv m2/s2	11111 1111 1111 1111 1111 1111 1111 1111
Swir	K.	スキャック オリカスカ 中国 カリスカス カラ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
83	જે	1 111 11 2111 221110011427222121 24112221222121 2411222122222221 24112222222222
$c_0 = 0.083$. v s/m	0100000014111 0100000041111 010000000000
x/R _o	V 8/E	0:000000000000000000000000000000000000
in.)	κ	4-10000-1-1000 4-1000000000000000000000000000000000000
(0.2	S -	15 (4 1 1 1 1 1 2 2 2 2 2
ո։ 5 ոտ	:n	#2111-170340-1100-12 4-180060000000000000000000000000000000000
Location	ll s/m	030-090-080-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
Axia1	r/R _o	04444446004444440000 648354864644440004 68586868664686868
	r mm +(0=0) -(0=180).	0.5
	Pt.	りの何と今の中国とそのは、大学の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

z

Š

Sur

o uv m2/s2

R LLV

uv m²/s²

⋧..

જે

ORIGINAL PAGE 19 OF POOR QUALITY

DATA AND CORRELATIONS AXIAL AND RADIAL VELOCITY

Run No.: 78

Flow Condition:

deg

95

!!

0

Orientation,

Ē

Location:

r mm +(0=0) -(0=180)

au Ś

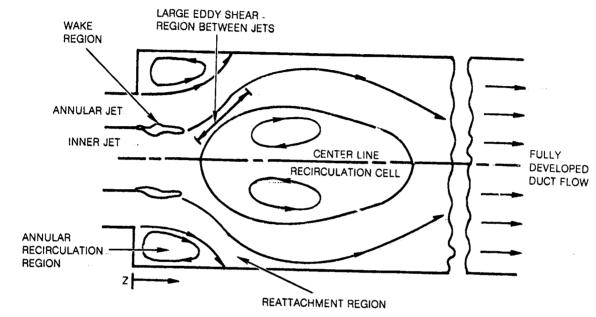
0.083

> \sqrt{8} 2

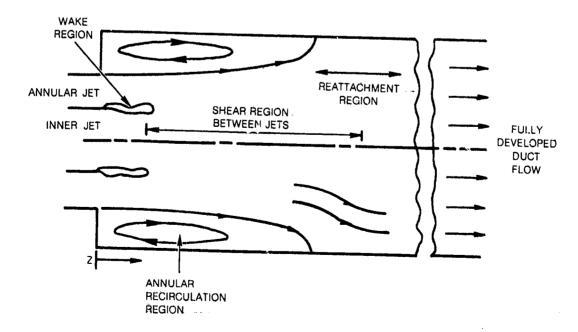
TURBULENT MOMENTUM ĄŅ

Research

NAS3-22771)

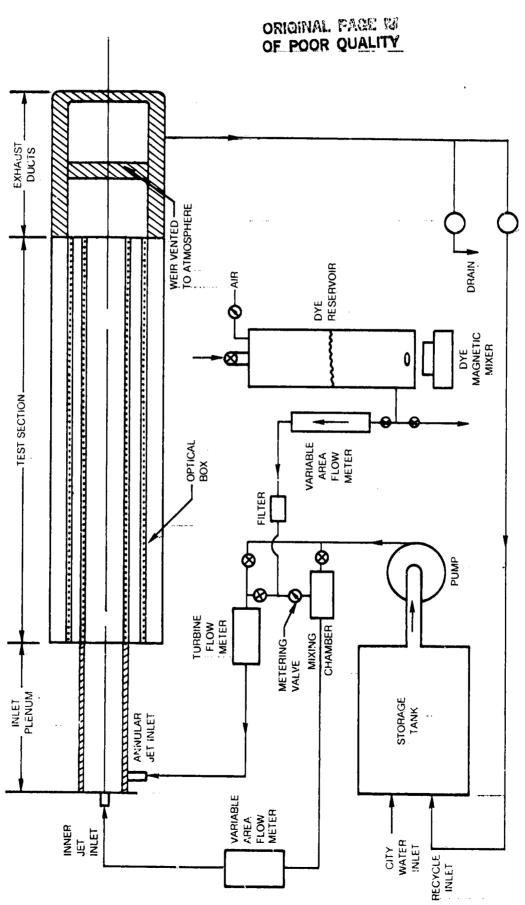

(Contract

Center


Center/NASA

SHEAR REGIONS WITH CONFINED, EXPANDING COAXIAL JETS

a) SWIRLING FLOW



b) NONSWIRLING FLOW

SCHEMATIC OF TEST FACILITY

81-12-38-4

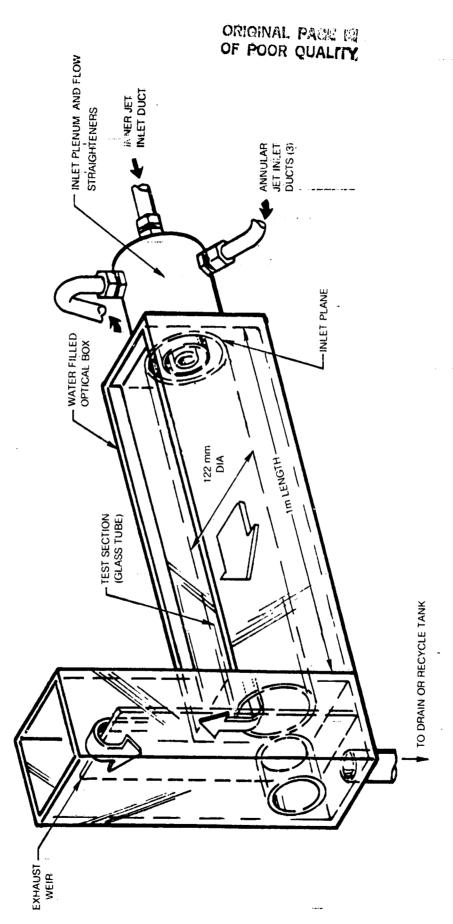
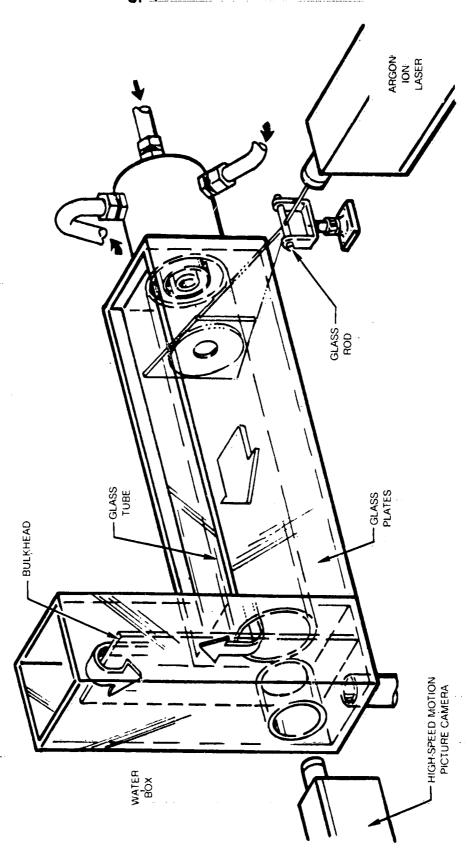


FIG. 4

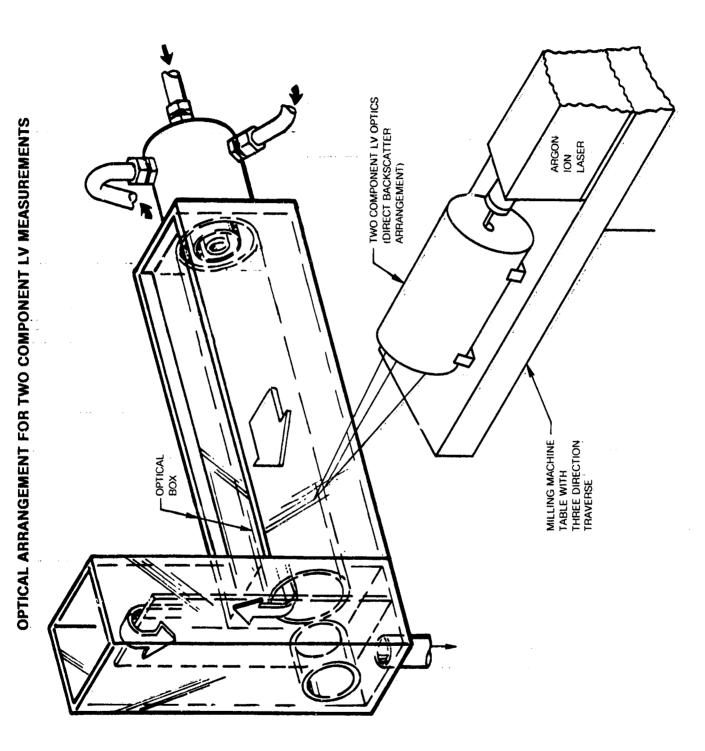
SKETCHES OF TEST SECTION INLET REGION WITH VELOCITY AND COORDINATE SYSTEM

30 DEG MEAN ANGLE SWIRLER IN ANNULAR INLET DUCT

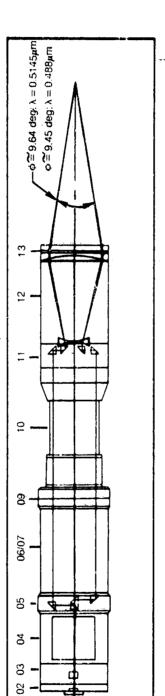
ORIGINAL PROBLEM OF POOR QUALITY


180 **END VIEW B-B** 1016 40 51 op | 2.402 OPTICAL BOX WATER LEVEL OPTICAL BOX 1 162 0.484 15.3 0 601 0.251 0.492 0.205 RADIUS RATIO, 1/Ro TO END OF LENGTH (mm) LENGTH (in.) DIMENSION PLAN VIEW A-A .GLASS 7.5 deg SWIRLER

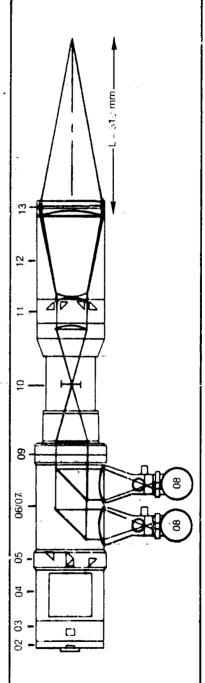
ORIGINAL PAGE IS OF POOR QUALITY. FIG. 5 HIGH-SPEED MOTION PICTURE CAMERA OPTICAL ARRANGEMENT FOR FLOW VISUALIZATION PHOTOGRAPHS AND MOTION PICTURES IN r.2 PLANE ARGON ION LASER GLASS-ROD MIRROR GLASS PLATES BULKHEAD WATER


81-12-38-5

ORIGINAL PACE IS . OF POOR QUALITY



SKETCH OF OPTICAL COMPONENTS AND BEAM PATHS USED FOR TWO COMPONENT VELOCITY MEASUREMENTS


DISA 55 × 00 OPTIC COMPONENTS

- 02 BACKCOVER PLATE WITH POLARIZATION ROTATOR
 - 03 BEAM SPLITTER MÖDULE, TYPE I

 - 04 BRAGG CELL SECTION
- 05 BEAM SPLITTER MODULE, TYPE II 06 BACKSCATTER SECTION WITH GREEN LASER LINE FILTER 07 BACKSCATTER SECTION WITH BLUE LASER LINE FILTER BACKSCATTER SECTION WITH BLUE LASER LINE FILTER
- 08 PHOTOMULTIPLIER TUBE
 - 09 LENS MOUNTING RING 10 — PINHOLE SECTIC:
 - 11 BEAM TRANSLATOR
 - 12.— BĖAM EXPANDER
 - 13 FRONT LENS

TRANSMITTER BEAM PATH.

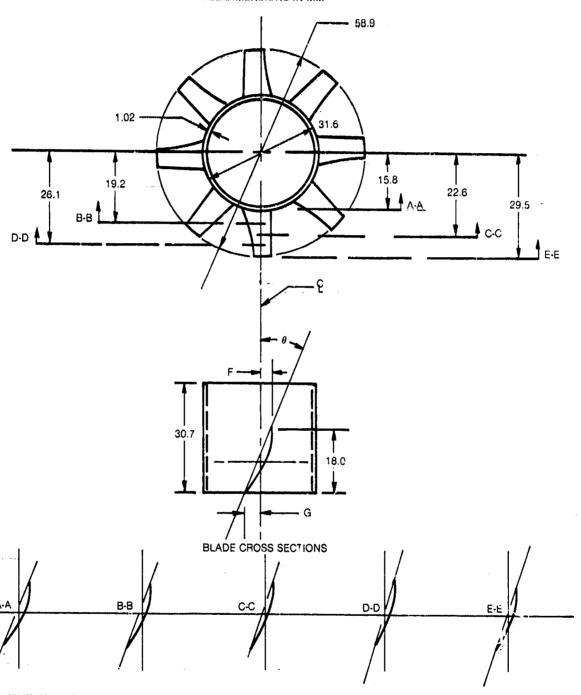
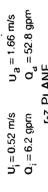

RECEIVER BEAM PATH

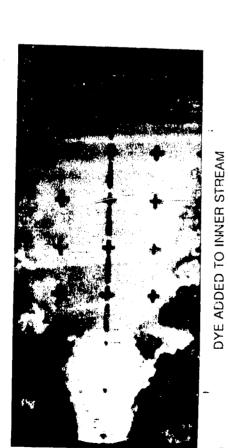
FIG. 9

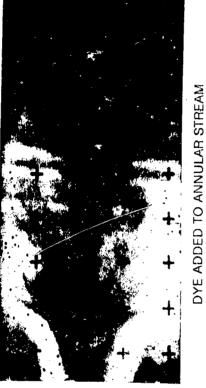
30 DEG FREE VORTEX SWIRLER DESIGN CHARACTERISTICS

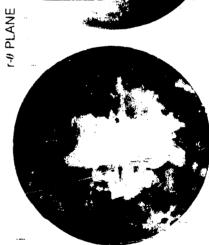
ALL DIMENSIONS IN MM

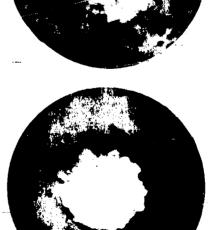

SECTION	POSITION	ANGLE θ , deg	Ė	G
A-A	нив	22.14	2.08	5.23
B-₿ .	25% -	19.38	2.11	4.22
c-c	MID	18.07	2.16	3.71
Ď-D	75%	17.26	2.18	3.40
E-E	TIP ·	18.14	2.24	3.18

83-9-92-1


z = 203 mm


VISUALIZATION OF FLOW CONDITION 1 WITH SWIRL IN ANNULAR STREAM



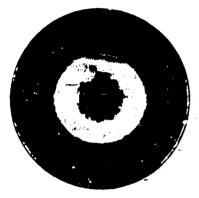


z = 102 mm

z = 25 mm

FIG. 11

VISUALIZATION OF FLOW CONDITION 1 WITH SWIRL IN ANNULAR STREAM


 $U_1 = 0.52 \text{ m/s}$

 $W_a = 1.66 \text{ m/s}$ $Q_a = 52.8 \text{ gpm}$

 $Q_i = 6.2 \text{ gpm}$

DYE ADDED TO ANNULAR STREAM

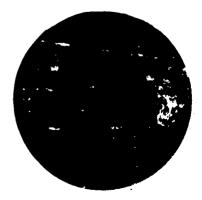
r-θ PLANÉ

z = 5 mm

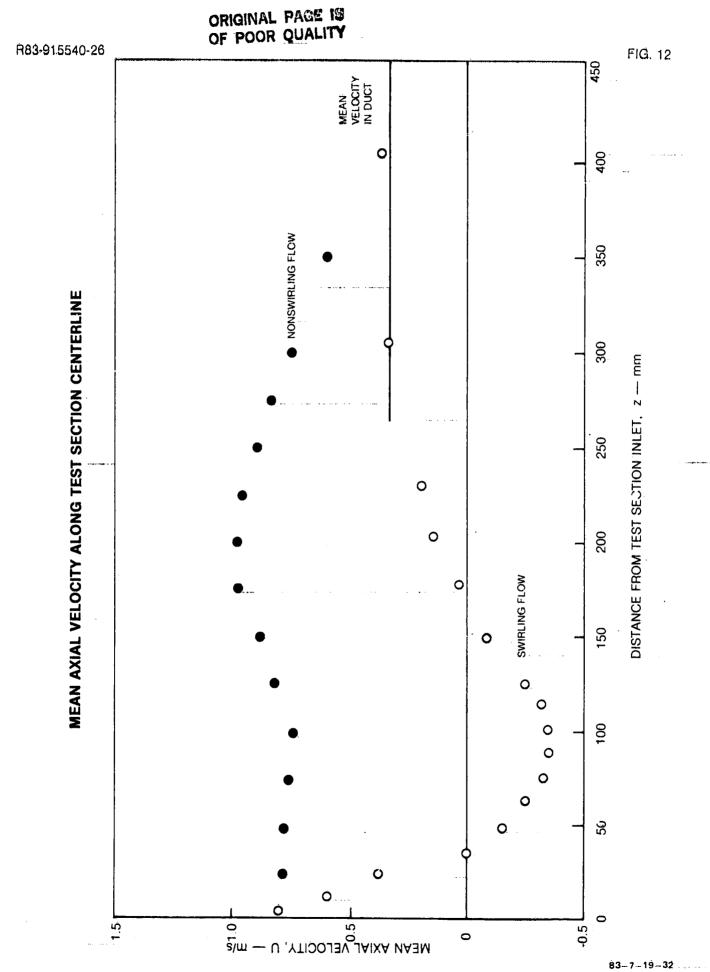
z = 25 mm

z = 51 mm

z = 102 mm


z = 152 mm

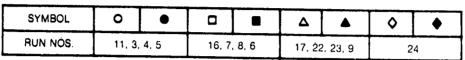
z = 203 mm

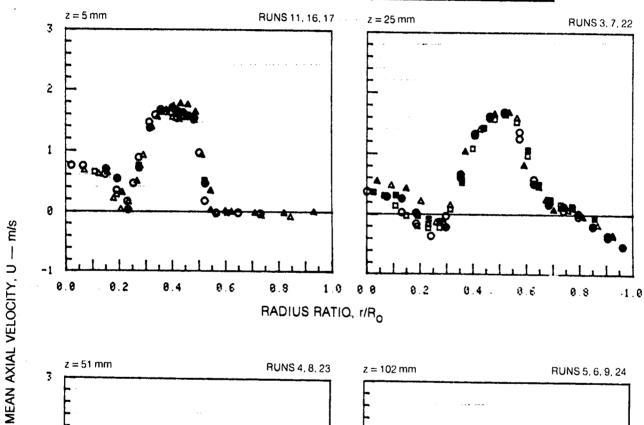

z = 305 rnm

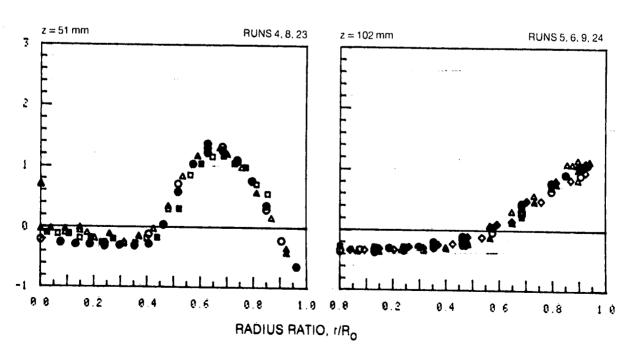
z = 406 mm

83-7-19-31

(+)


ORIGINAL PAGE IS OF POOR QUALITY.


①


FIG. 13

MEAN AXIAL VELOCITY PROFILES

	HÖRIZÓNTAL TRAVERSÉ	VERTICAL TRAVERSE	
OPEN SYMBOLS:	θ = 90°	# = Q°	
SOLID SYMBOLS:	θ = 270°	θ = 180°	

83-3-76-30

ORIGINAL PAGE IS -OF POOR QUALITY

R83-915540-26 _____

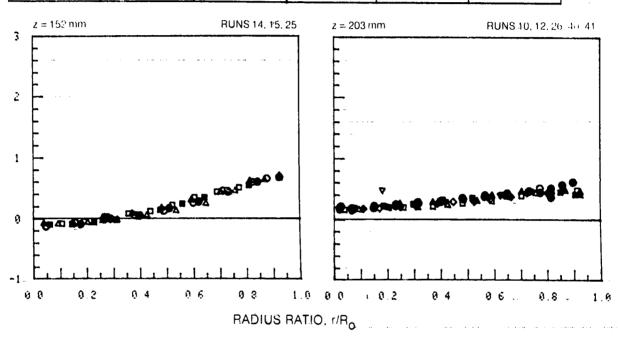

MEAN AXIAL VELOCITY, U

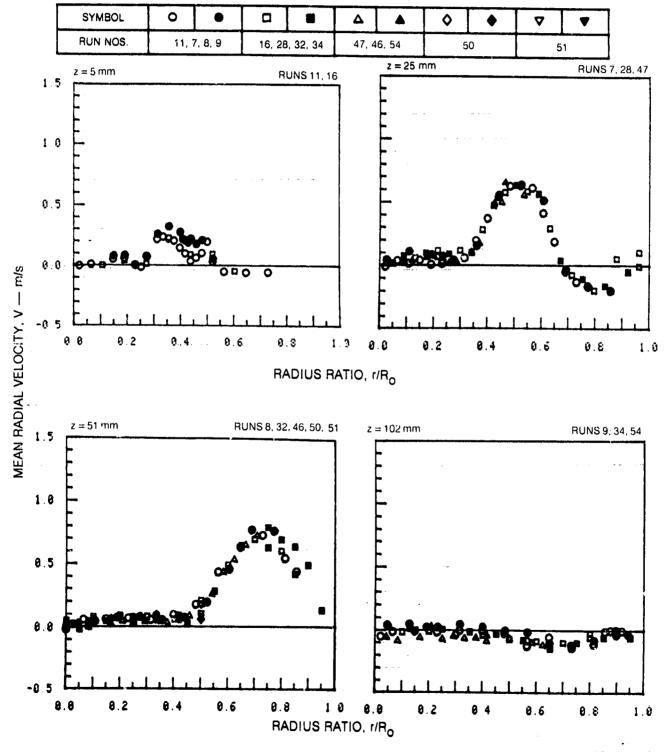
FIG. 13 (CONT.)

MEAN AXIAL VELOCITY PROFILES (CONT)

	HÖRIZONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBOLS.	u = 90°	"=0°	
SOLID SYMBOLS	" = 270°	″ == 180°	

SYMBOL	0.	•.			Δ	A	\Q	\Phi	▽	▼
RUN NOS	14, 10	0, 42, 44	15, 12	2, 43, 45	25	. 26	,	10	1	11

83-3-76-29

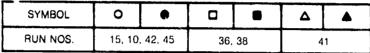

ORIGINAL PAGE 19 OF POOR QUALITY.

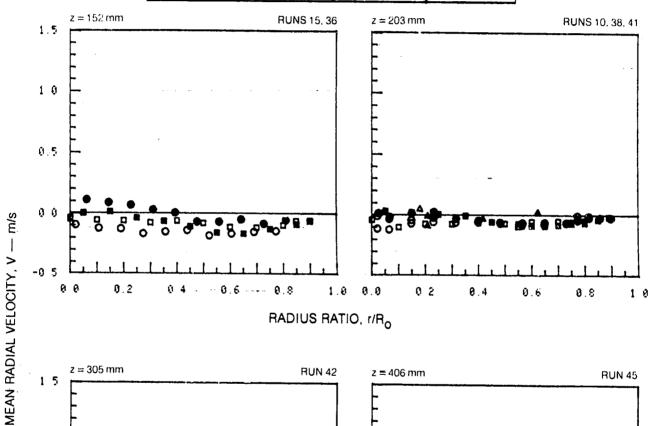
R83-915540-26

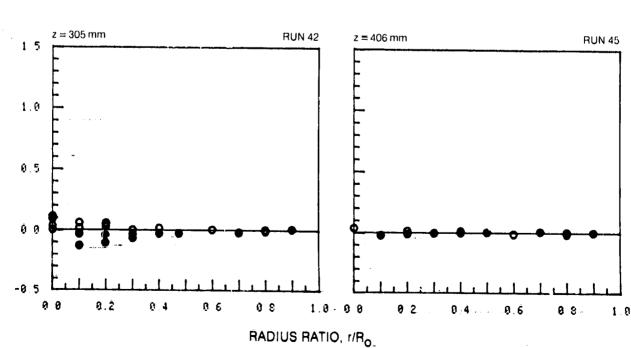
FIG. 14

MEAN RADIAL VELOCITY PROFILES

	HORIŽONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBOLS:	θ = 90°	# = 0 °	
SOLID SYMBOLS:	θ = 270°	θ = 180°	

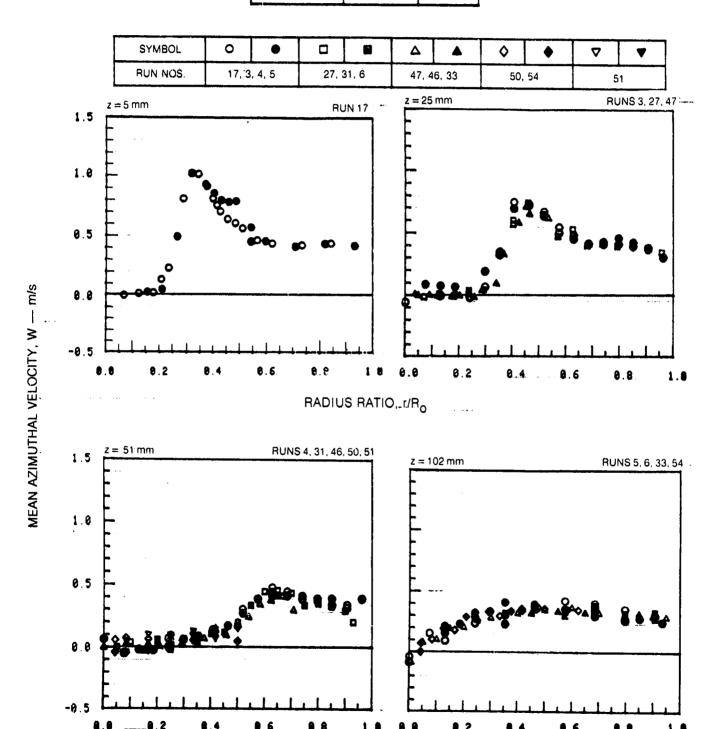



ORIGINAL PAGE IS OF POOR QUALITY


FIG.14 (CONT.)

MEAN RADIAL VELOCITY PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ = 0°
SÖLID SYMBÖLS:	θ = 270°	θ = 180°


33-3-76-27

ORIGINAL PAGE IS OF POOR QUALITY MEAN AZIMUTHAL VELOCITY PROFILES

FIG. 15

	HÓRIŽONTAL TRAVERSE	VÉRTICAL TRAVERSE	
OPEN SYMBOLS:	∥=90°	# = 0°	
SOLID SYMBOLS:	# = 270°	#-=180°	

83-3-76-23

RADIUS RATIO, r/Ro

R83-915540-26

ORIGINAL PAGE IS

FIG. 15 (CONT)

MEAN AZIMUTHAL VELOCITY PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	# = 90 °	<i>B</i> = 0.°
SOLID SYMBOLS	0 = 270°	θ = 180°

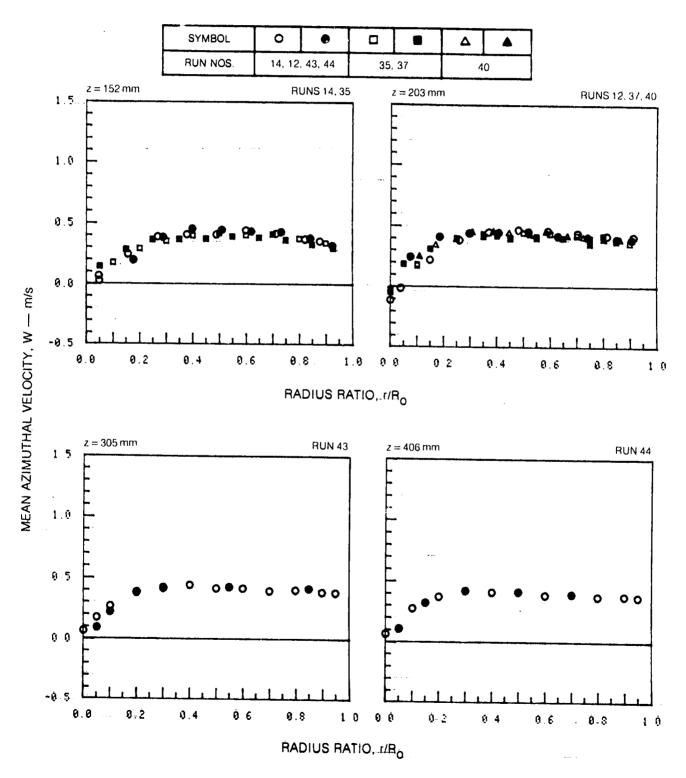


FIG. 16

FLUCTUATING AXIAL VELOCITY PROFILES

	HÖRIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	#=90°	#=0°
SOLID SYMBOLS:	θ = 270°	# = 180°

SYMBOL	0	•			Δ	A	\Q	•
RUN NÖS.	11, 3	. 4, 5	16, 7	, 8, 6	17, 22	. 23. 9	2	24

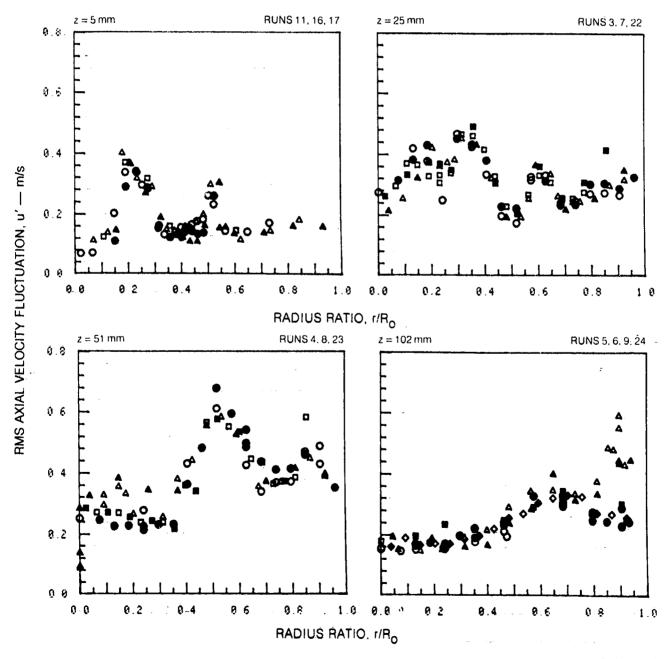
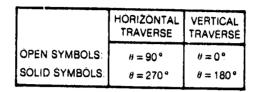
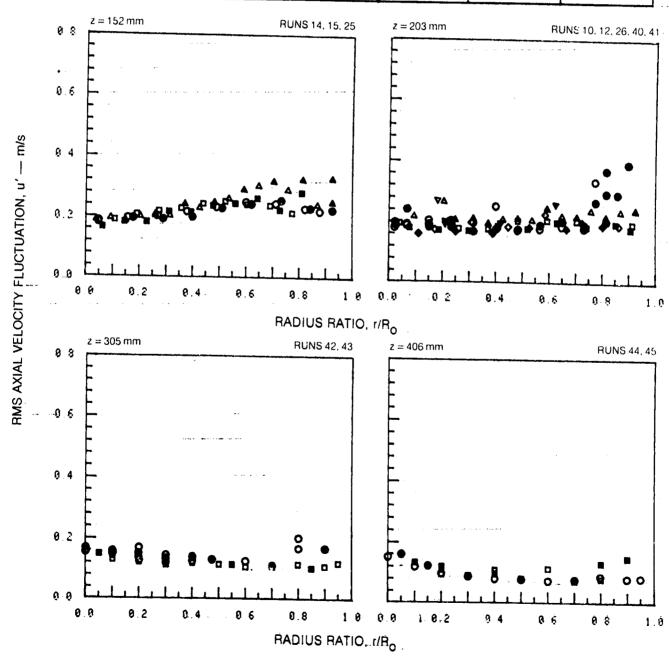




FIG. 16 (CONT)

FLUCTUATING AXIAL VELOCITY PROFILES (CONT)

SYMBÓL	0	•			Δ	A	•	•	▽	₩
RUN NOS.	14, 10,	42, 44	15, 12,	43, 45	25,	26	4	0	4	1

144

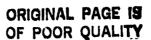
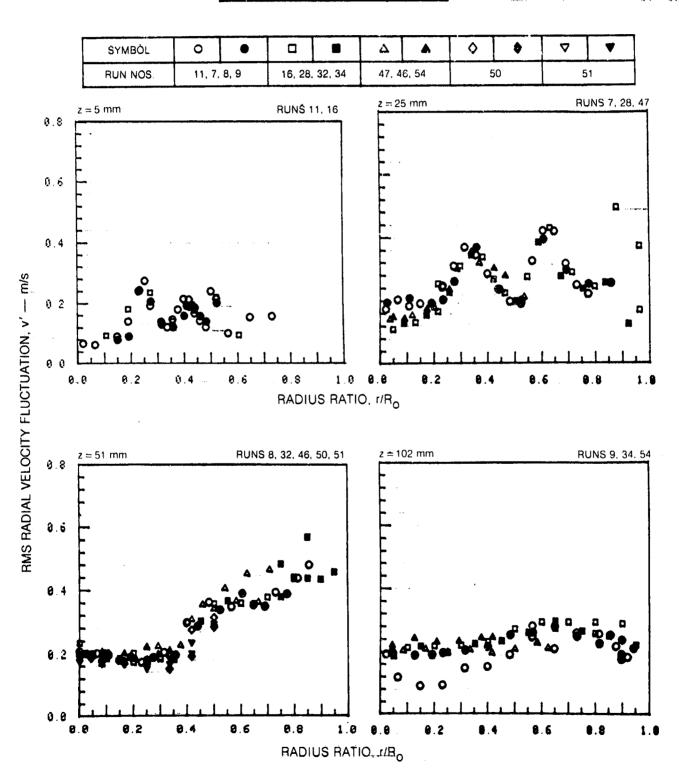
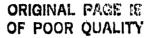
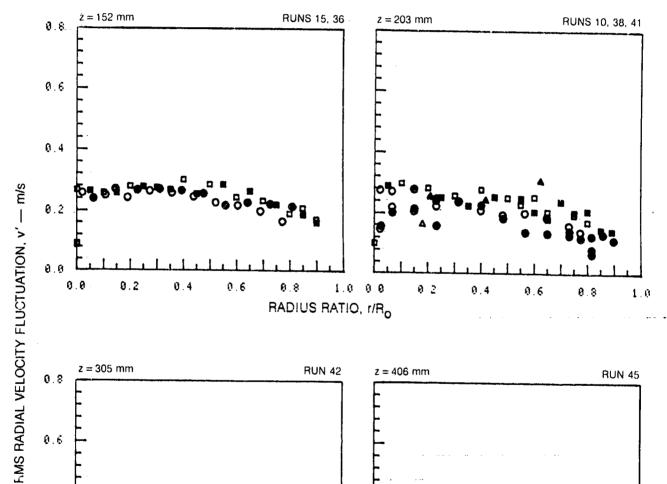



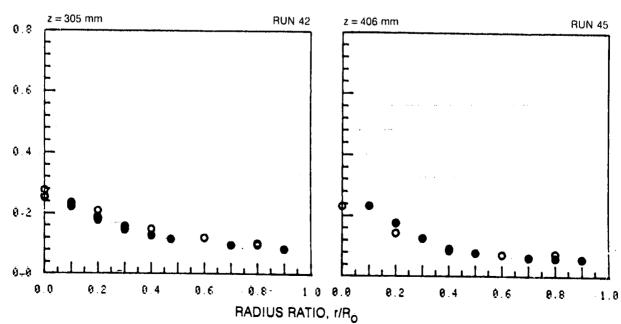
FIG. 17.

FLUCTUATING RADIAL VELOCITY PROFILES

	HORIZONTAL TRAVÉRSE	VĚRTICAL TRAVERSE
OPEN SYMBOLS.	#=90°-	#=0°
SOLID SYMBOLS:	" = 270°	"= 180°

R83-915540-26

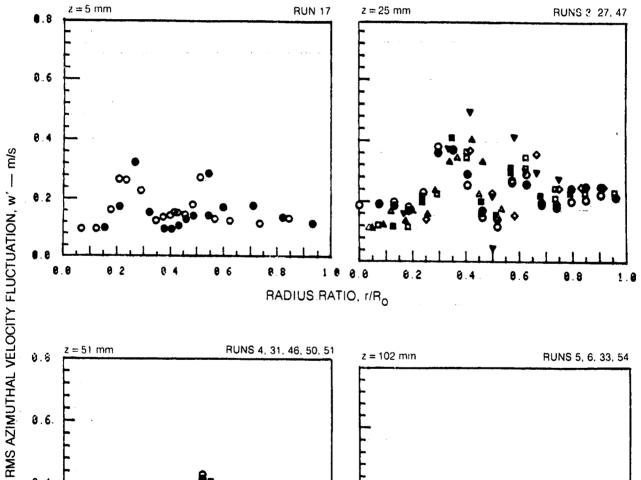



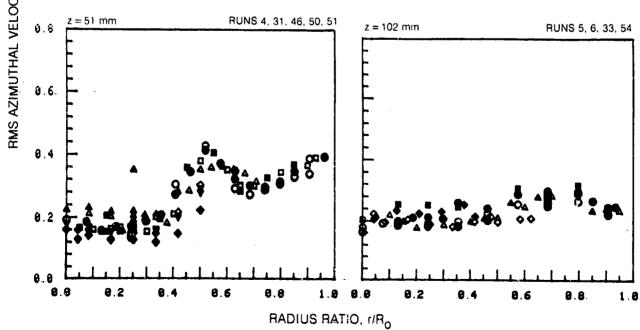

FIG. 17 (CONT.)

ELUCTUATING RADIAL VELOCITY PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.	n = 90°	() = 0°
SOLID SYMBOLS	# = 270°	#=180°

SYMBOL	0	•			Δ	A
RUN NOS	15, 10,	42, 45	36.	38	4	1





FLUCTUATING AZIMUTHAL VELOCITY PROFILES...

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	# = 90°	#=0°
SOLID SYMBOLS	# = 270°	#=180°

SYMBOL	0	•	a		Δ	A	\Q	•	▽	₩
RUN NOS	17; 3.	4, 5	27;	31, 6	47, 4	6, 53	5C,	54	5	1

R83-915549-26

Ø 0

0/2

9 4

0-6

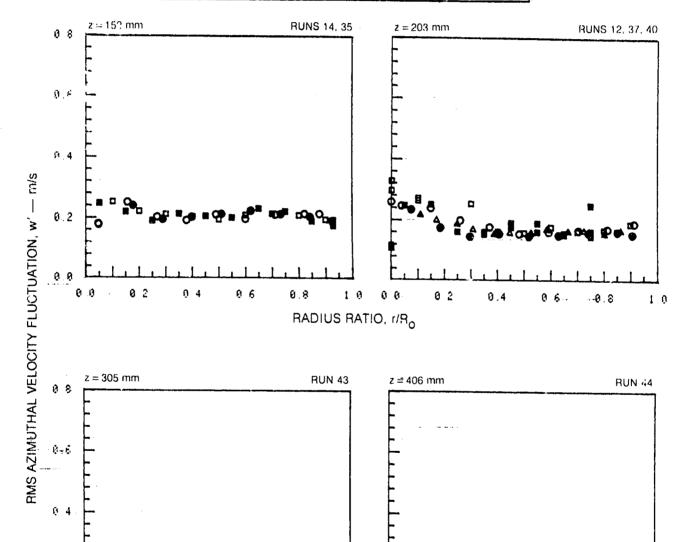

8.6

FIG. 18 (CONT.)

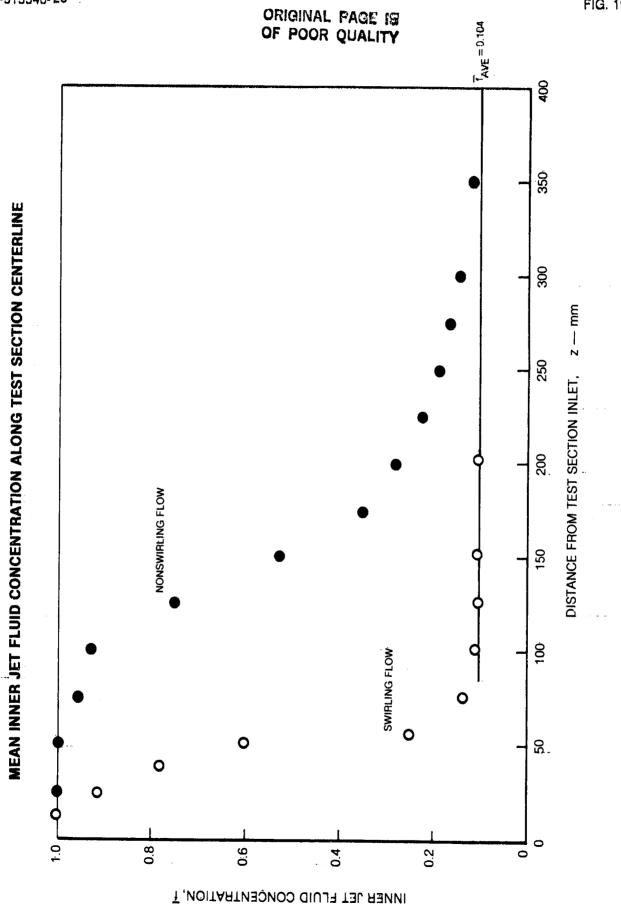
FLUCTUATING AZIMUTHAL VELOCITY PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.	#=90° #=270°	#=0° #=180°

SYMBOL	0	•			Δ	A
RUN NOS.	14, 12,	43, 44	35,	37	4	0

83-3-76-19

1 8


RADIUS RATIO, r/Ro

. 9 . 9

0.2

8.4

0.6

ORIGINAL PAGE IS

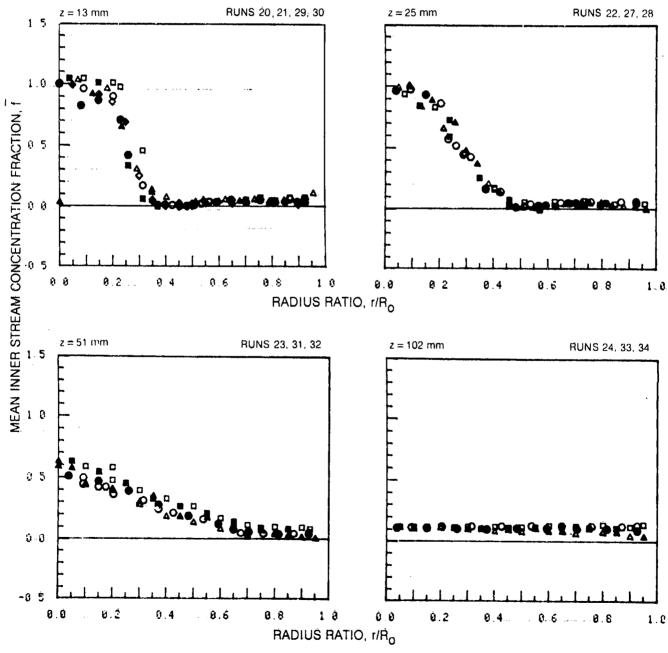

R83-915540-26....

FIG. 20 ____

MEAN INNER JET FLUID CONCENTRATION PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ = 0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

SYMBOL	0	•			Δ	A	♦	•
RUN NOS.	20, 22	, 23, 24	21, 27	'. 31, 33	29, 28	, 32, 34	3	3Ó

B2--11--36--3

MEAN INNER JET FLUID CONCENTRATION PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS: SOLID SYMBOLS:	, ,,	$\theta = 0^{\circ}$ $\theta = 180^{\circ}$

SYMBOL	0	•	۵		Δ	A
RUN NOS.	25,	26	35.	37	36.	38

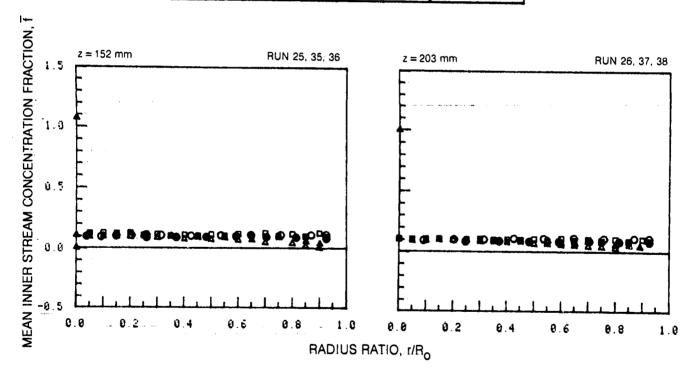
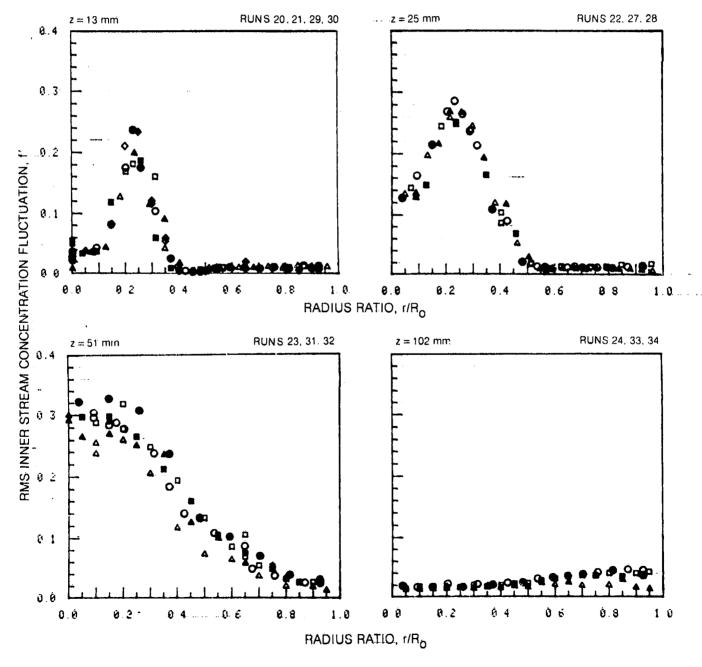
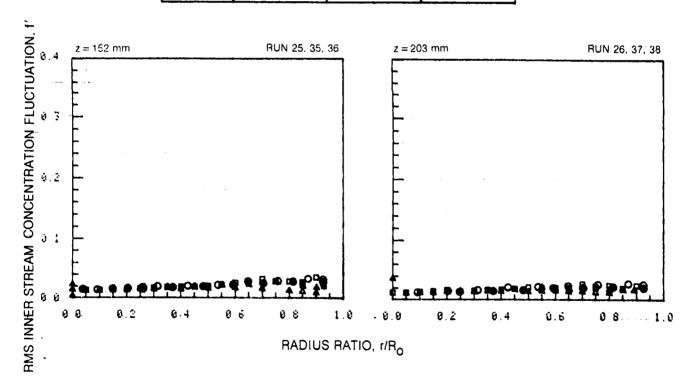



FIG. 21

FLUCTUATING INNER JET FLUID CONCENTRATION PROFILES

	PORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPĖN SYMBOLS: SOLID SYMBOLS:	0 = 90° θ = 270°	$\theta = 0.^{\circ}$ $\theta = 180^{\circ}$

SYMBOL	0	•	0		Δ	A	♦	•
RUN NOS.	20, 22	. 23, 24	21, 27,	31, 33	29, 28	, 32, 34	3	0

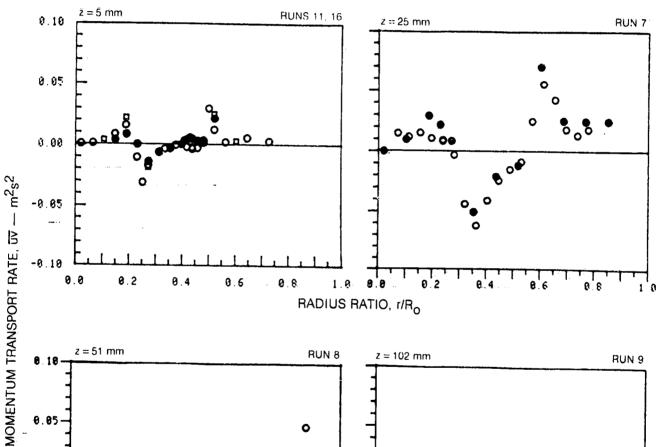


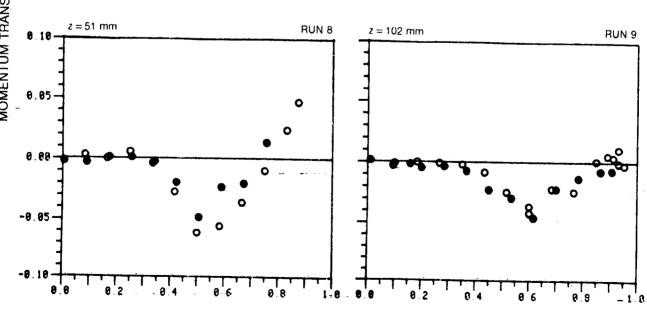
82--11--36--1

FLUCTUATING INNER JET FLUID CONCENTRATION PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:		θ=0°
SOLID SYMPOLS:	θ = 270° ~	θ== 180°

SYMBOL	0	•	0		Δ	A
RUN NOS.	25.	26	35.	37	36.	38




MOMENTUM TRANSPORT RATE, UV, PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSÉ
OPEN SYMBOLS	θ = 90°	<i>tt</i> = 0 °
SOLID SYMBOLS	0 = 270°	θ = 180°

SEE TABLE I FOR TRAVERSE DIRECTION

SYMBOL	0	•		
RUN NOS.	11, 7, 8, 9		1	6

RADIUS RATIO, r/Ro

82 -- 10-- 33-- 13

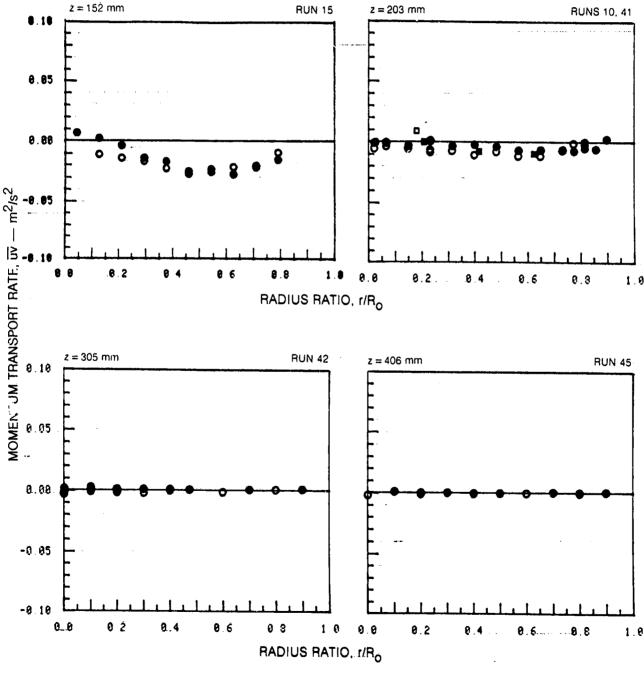
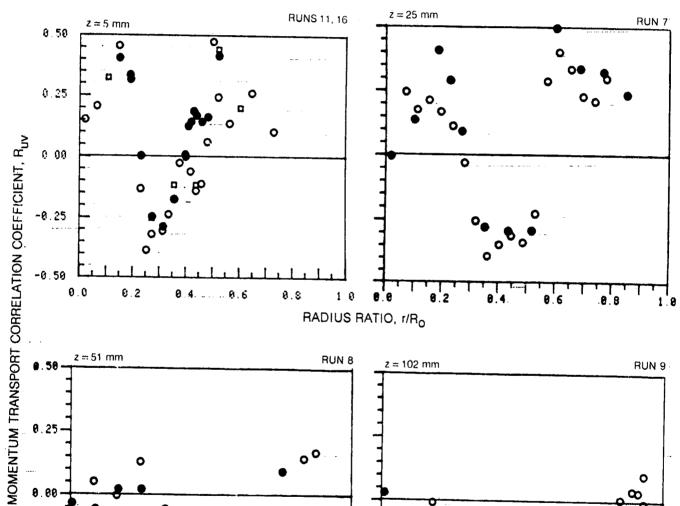

ORIGINAL PAGE IS

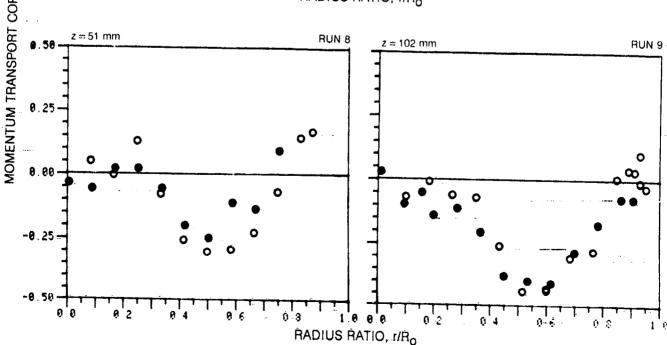
FIG. 22 (CONT.)

MOMENTUM TRANSPORT RATE, UV, PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTIČAL TRAVERSE
OPEN SYMBÖLS: SOLID SYMBOLS:		θ = 0° θ = 180°

SYMBOL	0	•		
RUN NOS.	15, 10,	42, 45	4	1

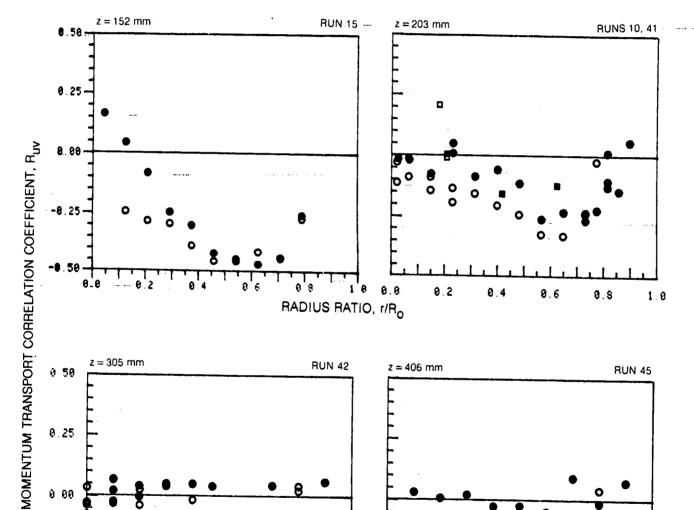


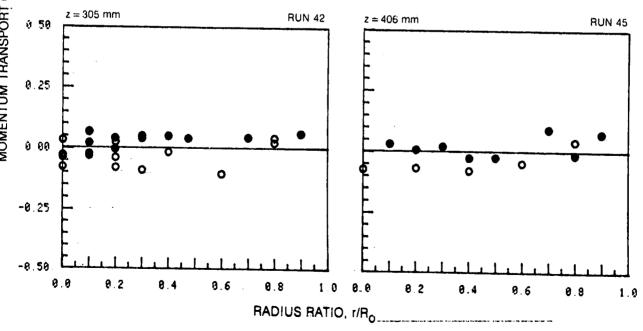


MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Ruy, PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ=0°
SOLID SYMBOLS	0 = 270°	<i>θ</i> = 180°

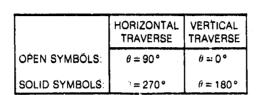
SYMBOL	0	•		
RUN NOS.	11, 7, 8, 9		1	16

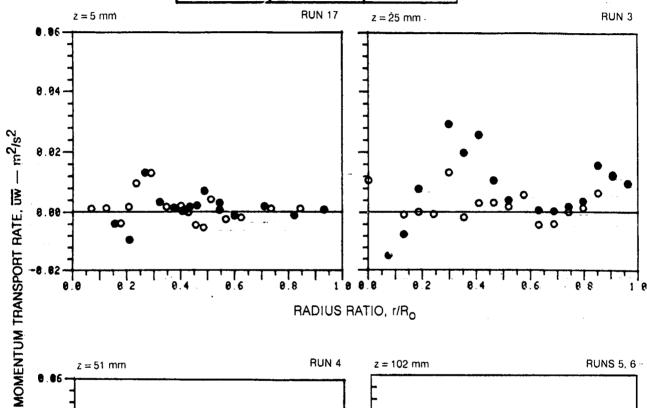


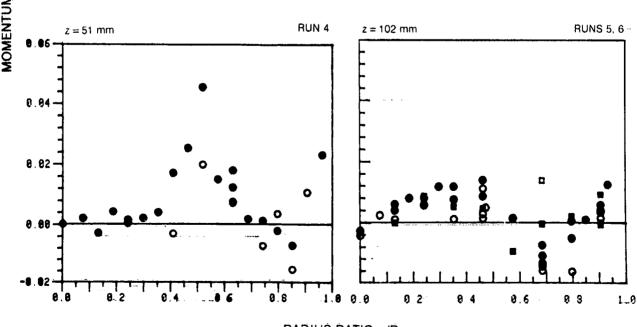

82-10-33-19

ORIGINAL PAGE IS CIENT, PROFILES (CONT.) **MOMENTUM TRANSPORT CORRELATION**

HORIZONTAL TRAVERSE TRAVERSE OPEN SYMBOLS $\theta = 90^{\circ}$ $\theta = 0^{\circ}$ SOLID SYMBOLS $\theta = 270^{\circ}$ θ = 180°


SYMBÖL	0	•		
RUN NOS.	15, 10, 42, 45		4	1





MOMENTUM TRANSPORT RATE, uw, PROFILES

SYMBOL	0	•	
RUN NOS.	17, 3, 4, 5		6

RADIUS RATIO, r/Ro

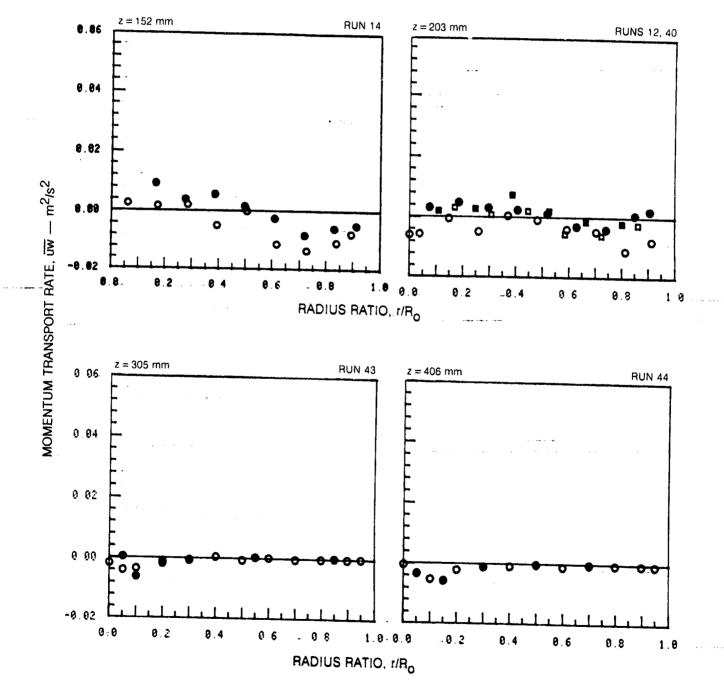
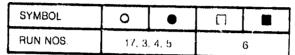
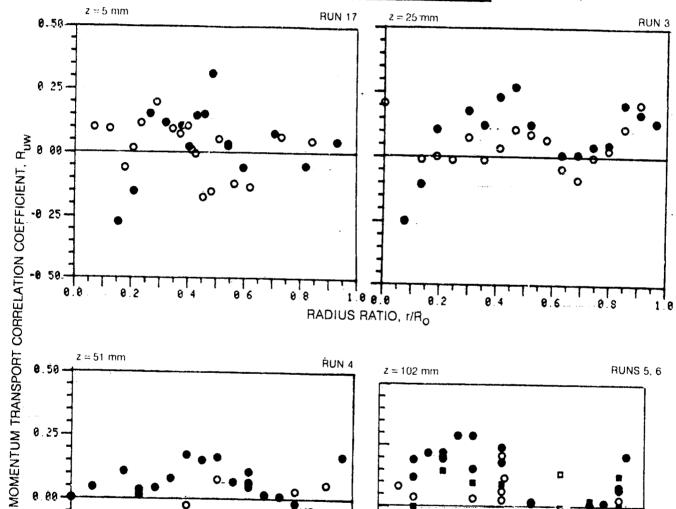


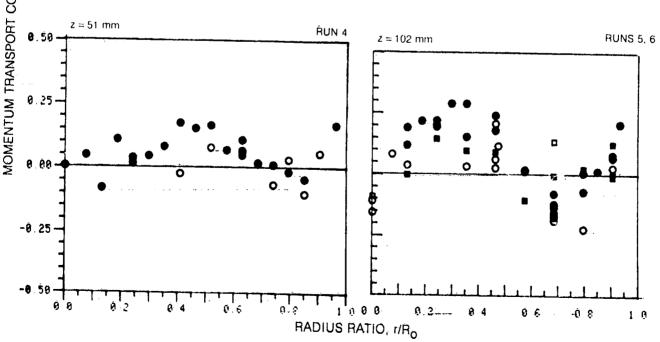
FIG. 24 (CONT.)

MOMENTUM TRANSPORT RATE, uw, PROFILES (CONT.)

	HÖRIZÖNTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.	θ = 90°	θ = 0°
SOLID SYMBOLS:	# = 270°	θ = 180°


SYMBOL	0	•		
RUN NOS.	14, 12,	43, 44	40)

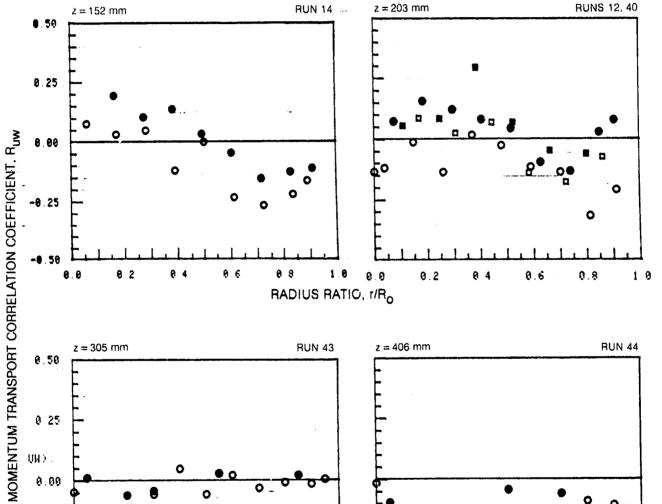


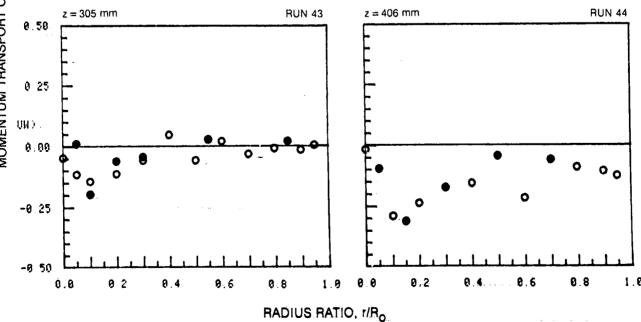


MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Ruw, PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS	<i>0</i> = 90 °	ff == O°
SOLID SYMBOLS	# = 270°	#≈180°

82-10-33-21


R83-915540-26


FIG. 25 (CONT.)

MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Ruw, PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90 °	θ = 0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

SYMRÖL	0	•	0	
RUN NOS.	14, 12, 43, 44		4	Ò

R83-915540-26

ORIGINAL PAGE IS OF POOR QUALITY

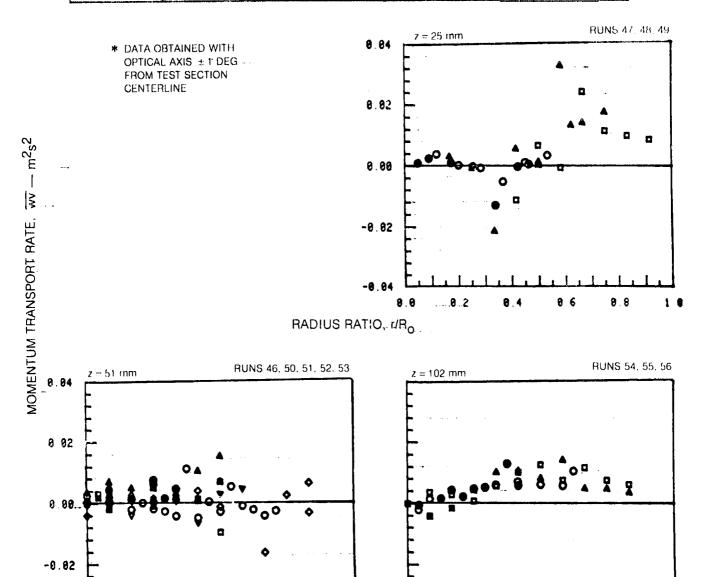


FIG. 26.....

MOMENTUM TRANSPORT HATE, WV, PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSÉ
OPEN SYMBOLS:	u= 90°	# == 0°
SOLID SYMBOLS.	# ≈ 270°	#= 180°

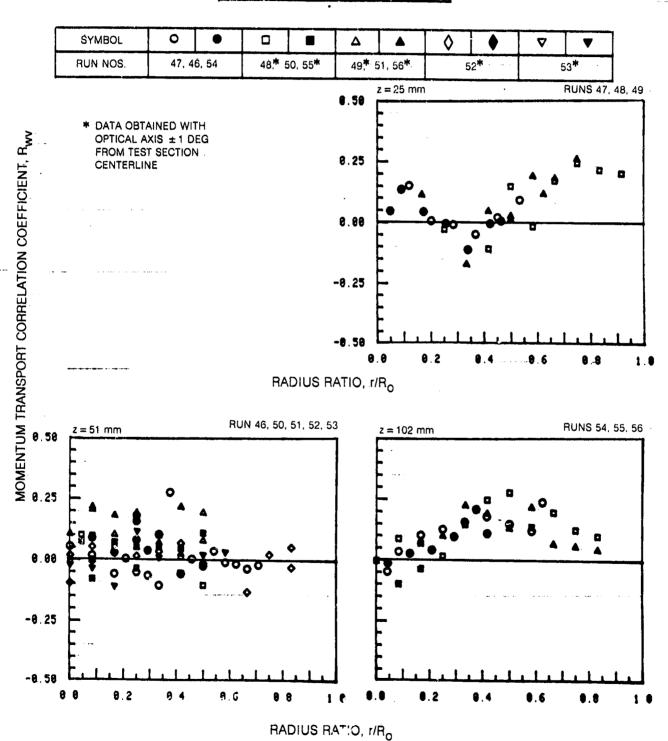
SYMBOL	0	•	۵	6	Δ	A	\Diamond	•	♥.	▼
RUN NOS	47. 4	6, 54	· ·	0, 55* -	1	51, 56 *	1	52 *		13 *

•

1.0

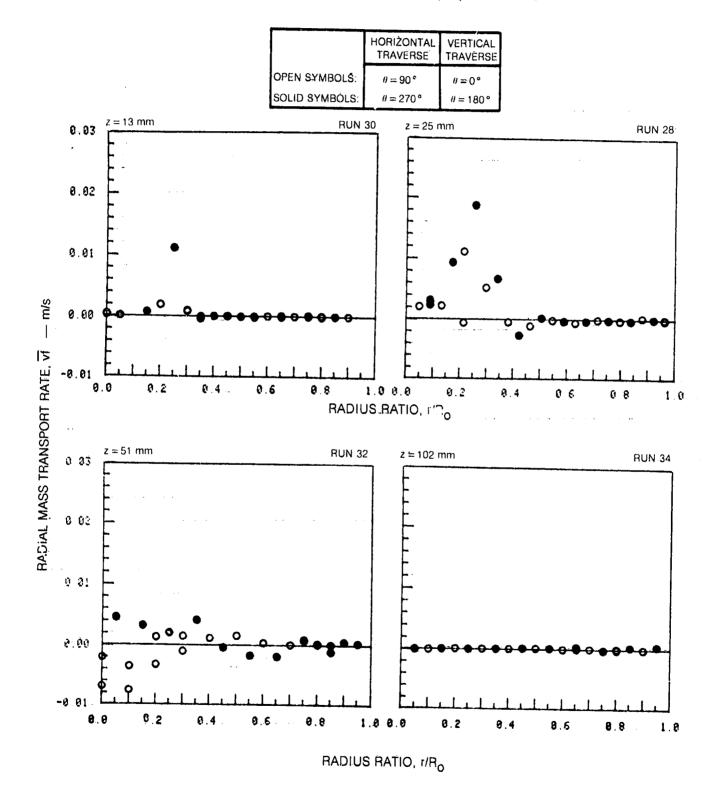
RADIUS RATIO, r/Ro

0.2

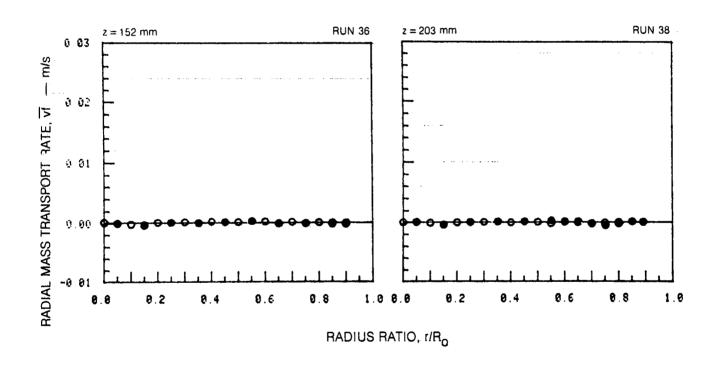

0.2

0.6

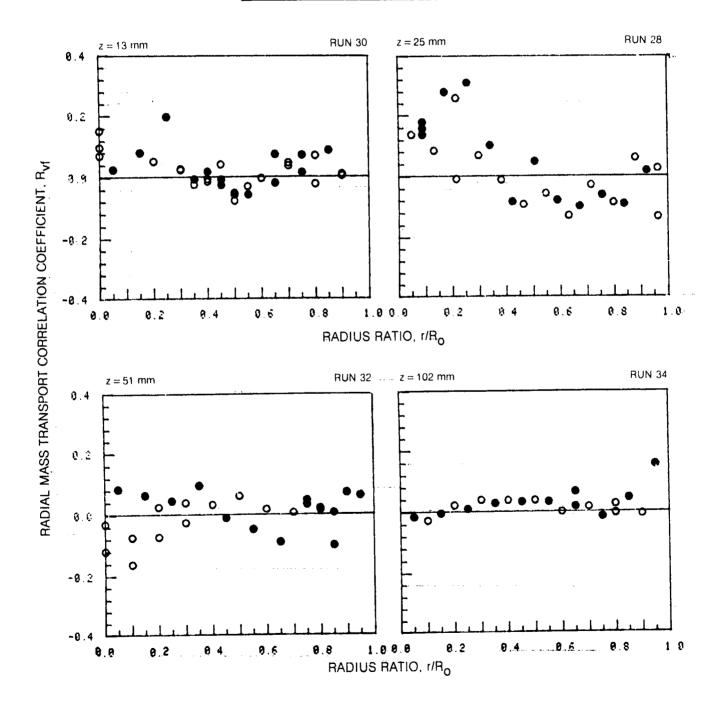
MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Rwy, PROFILES


	HOR!ZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	// = 90°	#=0°
SOLID SYMBOLS:	#= 270°	#= 180°

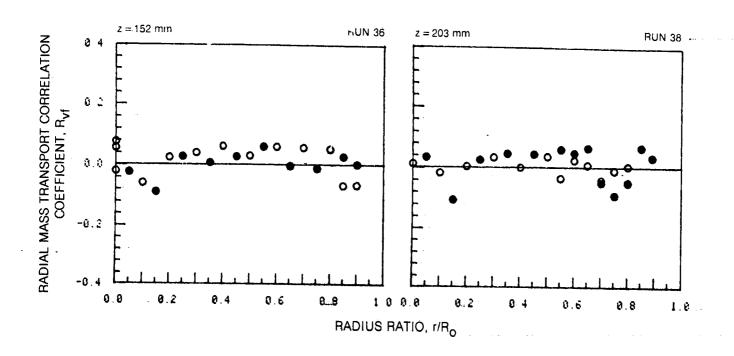
83-1-58-2


RADIAL MASS TRANSPORT RATE, VI, PROFILES

RADIAL MASS TRANSPORT RATE, VI, PROFILES (CONT.)

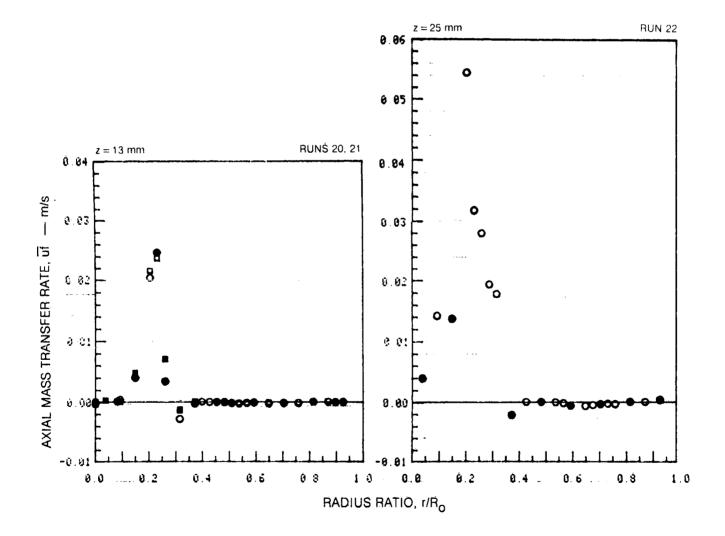

	HORIŽONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	#=0°
SOLID SYMBOLS:	#= 270°	θ = 180°

RADIAL MASS TRANSPORT CORRELATION COEFFICIENT, Ryf, PROFILES


	HORIŻONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBOLS:	<i>u</i> = 90 °	# = 0°	
SOLID SYMBOLS:	# ≅ 270°	u = 180°	

83 - 2 -55 - 12A

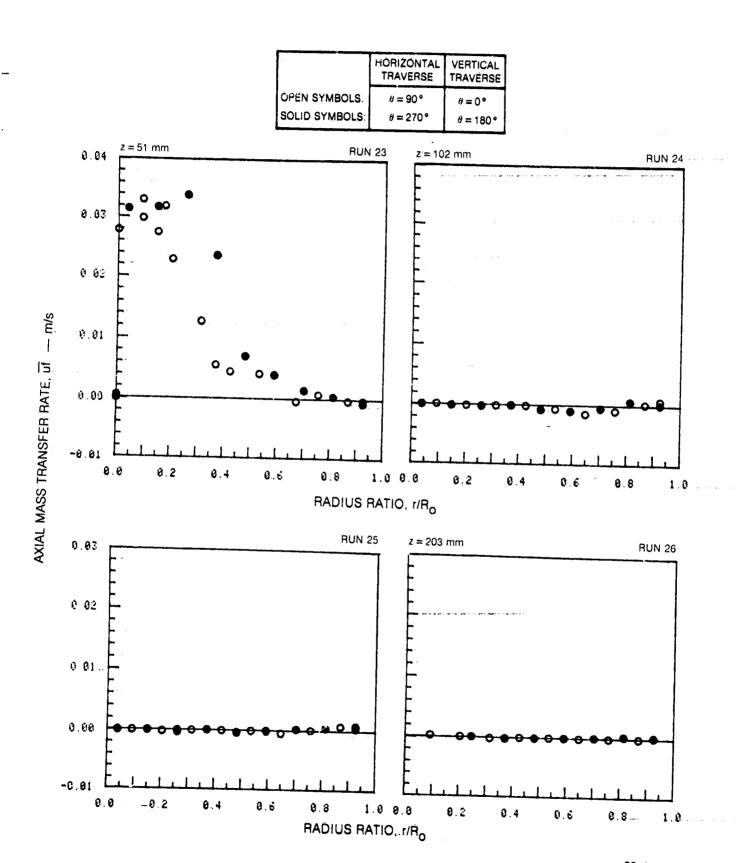
RADIAL MASS TRANSPORT CORRELATION COEFFICIENT, R_{vf}, PROFILES (CONT.)


	HORIZÓNTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	#= 90°	#=0°
SÓLID SYMBOLS:	#= 270°	θ = 180°

AXIAL MASS TRANSPORT RATE, ut, PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.	#=90°	# = 0°
SOLID SYMBOLS.	θ = 270°	#=180°

SYMBOL	0	•		
RUN NOS.	20, 22		2	?1

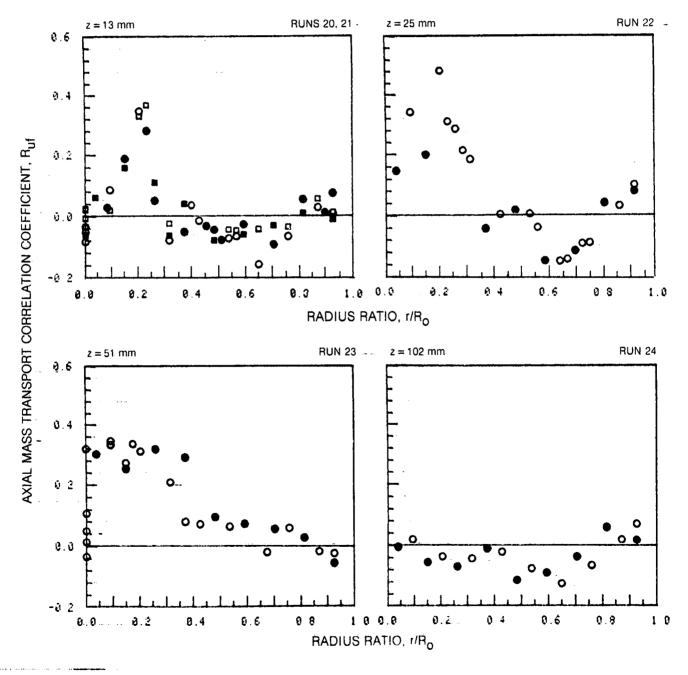


83-2-55-9A

①

EIG. 30 (CONT.)

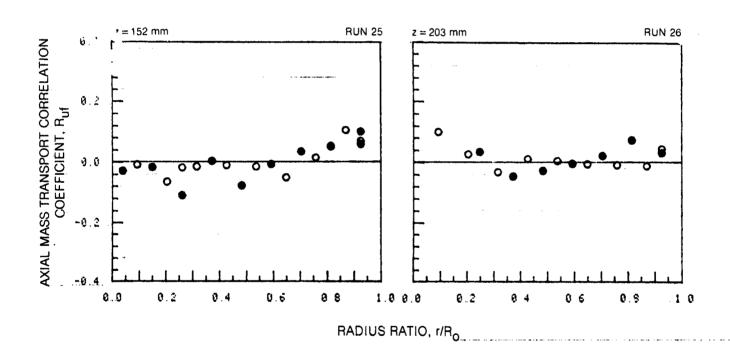
AXIAL MASS TRANSPORT RATE, uf, PROFILES (CONT.)

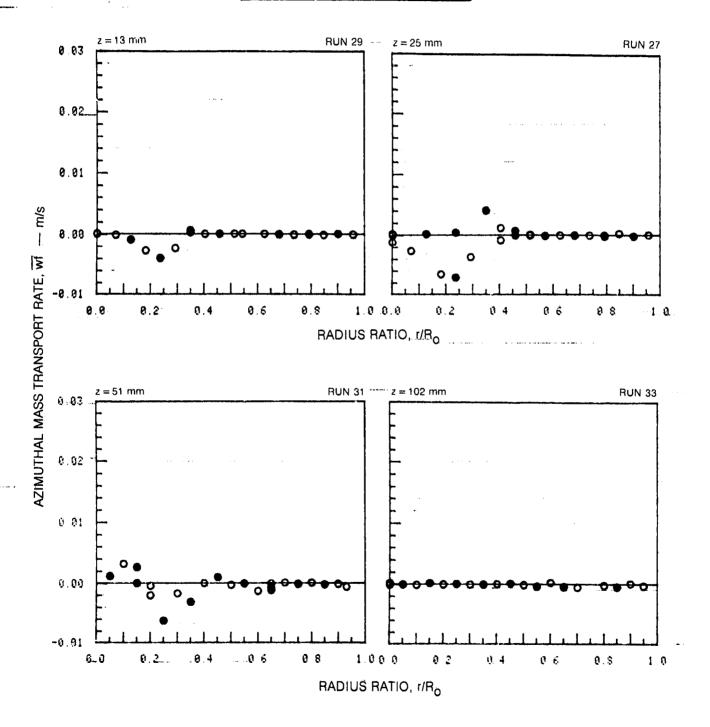


83-2-55-98 --

AXIAL MASS TRANSPORT CORRELATION COEFFICIENT, Ruf, PROFILES

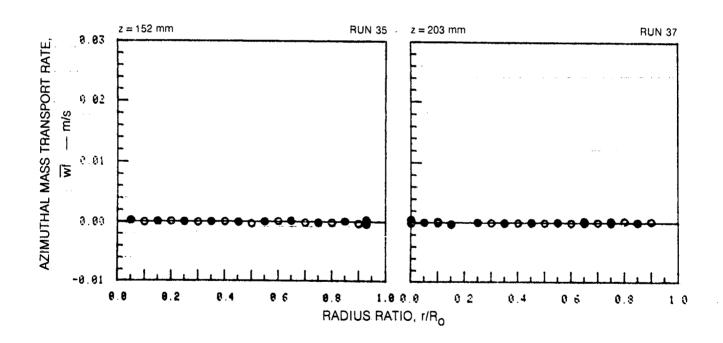
	HORIZONTAL TRAVERSE	VÉRŤICAL TŘAVEŘŠE	
OPEN SYMBOLS:	<i>(</i>) = 90 °	#=0°	
SOLID SYMBOLS:	θ = 270°	0 = 180°	

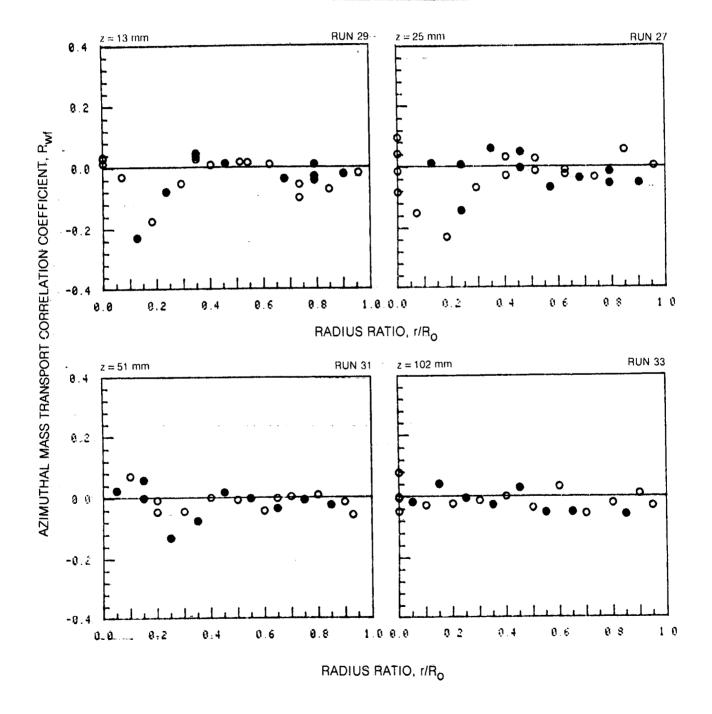

SYMBOL	0	•	0	
RUN NOS.	20 22,	23, 24	2	21


AXIAL MASS TRANSPORT CORRELATION COEFFICIENT, Ruf, PROFILES (CONT.)

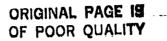
	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	#=-90°	#=0°
SOLID SYMBOLS:	# = 270°	# = 180°

AZIMUTHAL MASS TRANSPORT RATE, Wf, PROFILES

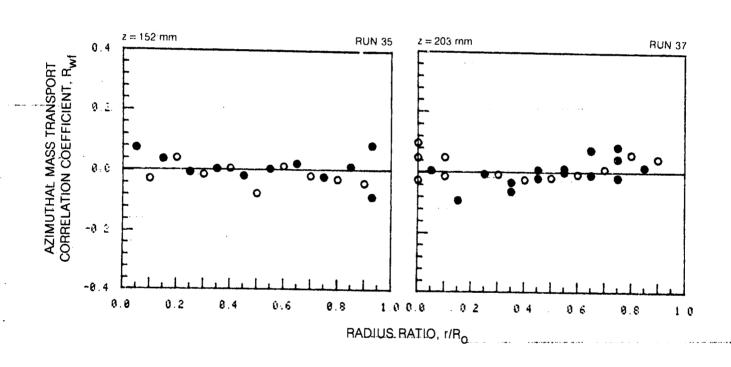

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	# = 90°	<i>u</i> = 0°
SOLID SYMBOLS:	<i>0</i> = 270 °	#= 180°


AZIMUTHAL MASS TRANSPORT RATE, Wf, PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	<i>(l</i> = 90 °	#=0°
SOLID SYMBOLS:	<i>u</i> = 270°	<i>∥</i> = 180°



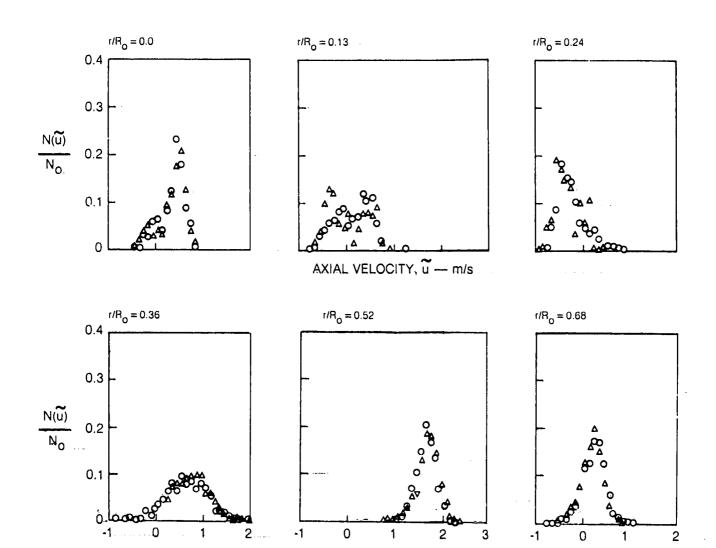
	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°.	<i>(</i> ⊧=0° ·
SOLID SYMBOLS:	#	#≔180°



AZIMUTHAL MASS TRANSPORT CORRELATION COEFFICIENT, Rwf, PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
ÖPEN SYMBOLS.	# = 90°	#≈0°
SOLID SYMBOLS:	u=270°	#= 180°

83-2-55-138


AXIAL VELOCITY PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION: 25 mm

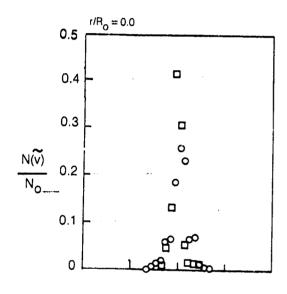
AVERAGES OF DATA FROM RUNS 3 (A) AND 7 (O)

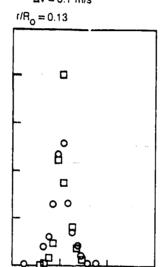
r/R _o	25	u'.	S _u	· K _u
0.00	0.36	0.27	-0.84	3.0
0.13	0.09	0.39	0.06	2.2
0.24	-0.29	0.28	0.64	3.5
0.36	0.65	0.44	0.24	3.1
0.52	1.36	0.21	-0.32	3.1
0.68	0.21	0.24	-0.24	3.5

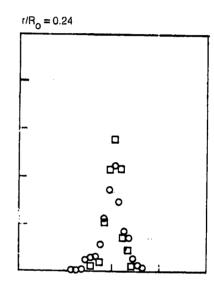
∡u = 0.1 m/s

83-7-19-10

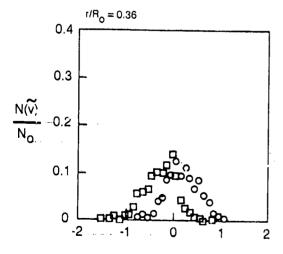
AXIAL VELOCITY, ~ m/s

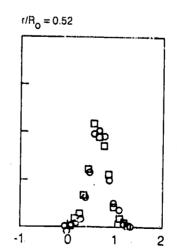

RADIAL VELOCITY PROBABILITY DENSITY FUNCTIONS

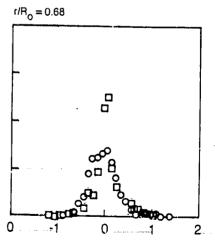

AXIAL LOCATION: 25 mm.


AVERAGES OF DATA FROM RUNS 7 (O) AND 28 (C)

r/R _o	৵	, v'	s _v	κ _v
0.00 0.13 0.24 0.36 0.52 0.68	0.01 0.04 0.05 0.24 0.64 0.01	0.16 0.16 0.23 0.34 0.20 0.29	0.20 0.20 •0.82 0.17 0.04	5.2 4.4 5.1 3.0 3.7 4.6


 $\Delta \widetilde{V} = 0.1 \text{ m/s}$



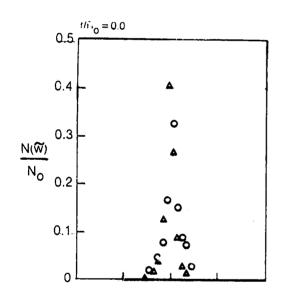


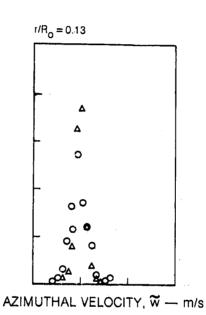
RADIAL VELOCITY, 7 - m/s

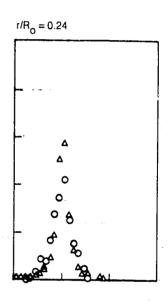
RADIAL VÉLOCITY, V - m/s

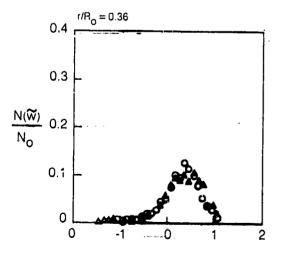
83-7-19-9

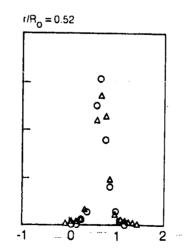
FIG. 36

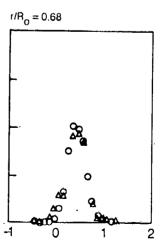

AZIMUTHAL VELOCITY PROBABILITY DENSITY FUNCTIONS


AXIAL LOCATION: 25 mm


AVERAGES OF DATA FROM RUNS 3(0) AND 27(\Delta)


i/R _o	} \$	w ′	s _w	K _w
0.00	-0.04	0.15	-0.09	4.4
0.13	0.01	0.16	0.68	5 9
0.24	-0.01	0.22	-0.51	5.3
0.36	0.33	0.39	-0.47	3.8
0.52	0.64	0.15	0.06	5.1
0.68	0.41	0.21	-0.29	4.2


ω = 0.1 m/s

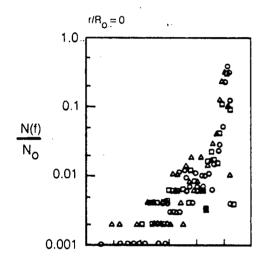


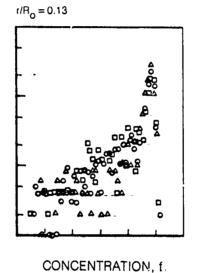
AZIMUTHAL VELOCITY, ₩ - m/s

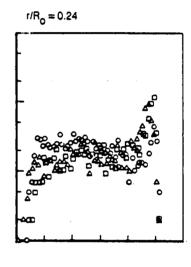
83-7-19-8

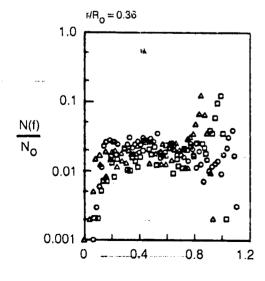
ORIGINAL PAGE IS

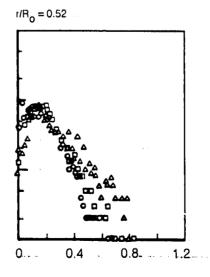
EIG. 37

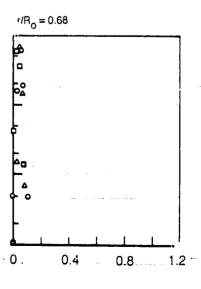

CONCENTRATION PROBABILITY DENSITY FUNCTIONS


AXIAL LÖÇATIÖN: 25 min


AVERAGES OF DATA FROM RUNS 22 (O), 27 (Δ), AND 28 ($\dot{\Box}$)


r/R _ö]-	1'	S	K _f
0.00	0.97	0.12	-2.91	12.4
0.13	0.86	0.18	-1.94	6.4
0.24	0.63	0.27	-0.25	1.9-
0.36	0.21	0.13	0.99	4.2
0.52	0.03	0.02	3.93	27.5
0.68	0.05	0.01	0.26	4.2


 $\Delta f = 0.02$



CONCENTRATION, f

83-7-19-24

ORIGINAL PAGE IS OF POOR QUALITY

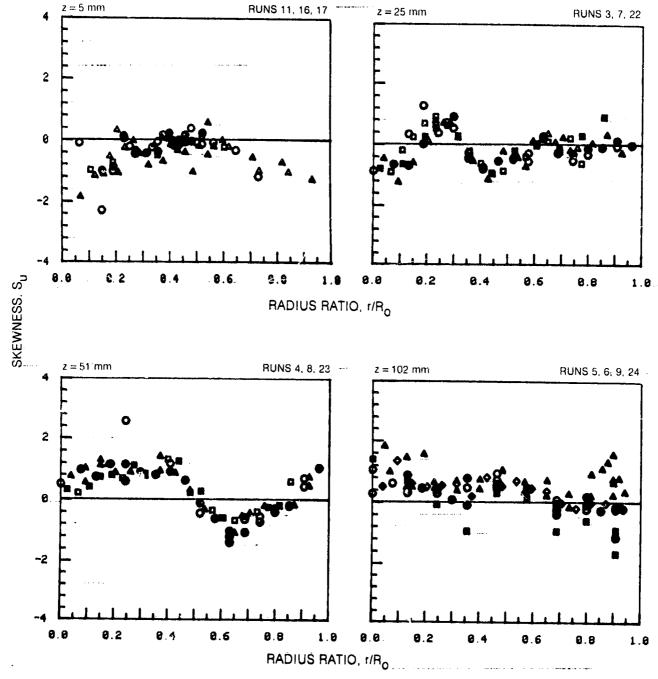

R83-915540-26

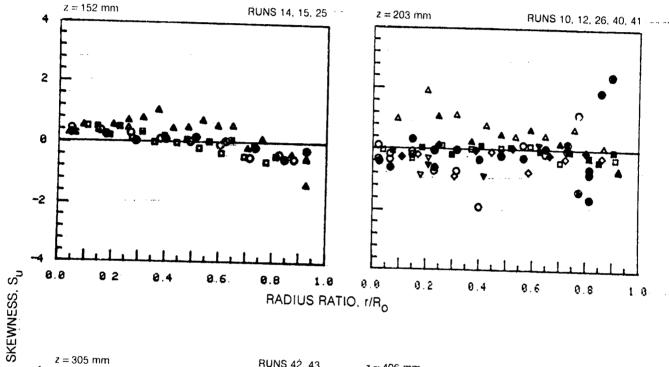
FIG. 38

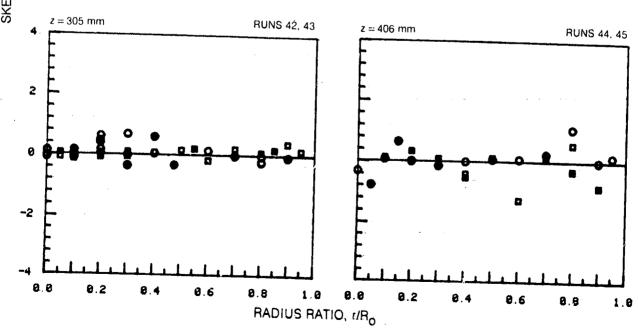
SKEWNESS OF AXIAL VELOCITIES PROFILES

	HÓRIZONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBOLS	# = 90°	#=0°	
SOLID SYMBOLS	# = 270°	#= 180°-	

SYMBOL	0	•	0		Δ	A	♦	•
RUN NOS	11, 3,	4, 5	16, 7,	8, 6	17, 22	2, 23, 9	2	24

83-3-76-11

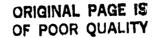

ORIGINAL PAGE 19 OF POOR QUALITY


FIG. 38 (CONT.)

SKEWNESS OF AXIAL VELOCITIES PROFILES (CONT.)

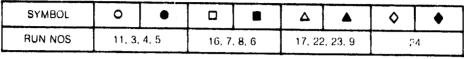
	HORIŽÓNTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS	#=90°	#=0°
SOLID SYMBOLS	<i>u</i> = 270°	#=180°

ĠVLIDO:											
ŚYMBOL	0	•			Δ	▲	0	•	∇		١
RUN NOŚ	14, 10,	42, 44	15,-12,	43, 45	25,	26	41	D .	4	1	



181

83-3-76-11A



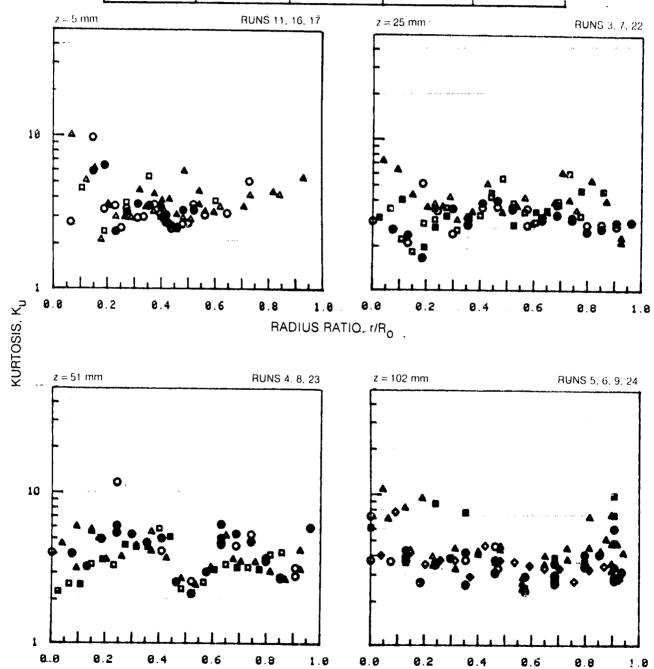

R83-915540-26

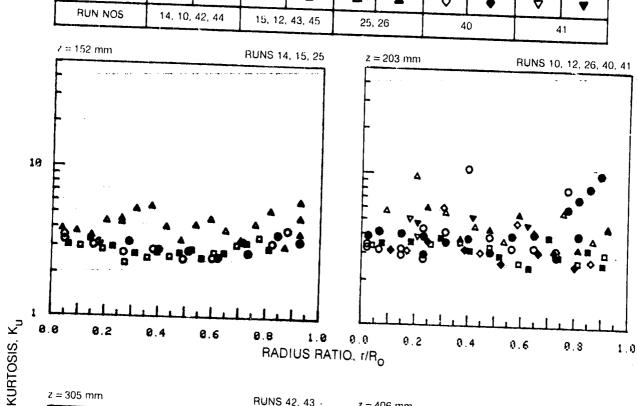
FIG. 39

KURTOSIS OF AXIAL VELOCITIES PROFILES

	HORIZONTAL TRAVÉRSE	VERTICAL . TRAVERSE	
OPEN SYMBOLS	#= 90°	#=0°	
SOLID SYMBOLS	#= 270°	#=180°	

83--3--76-12

RADIUS RATIO, r/Ro


SYMBOL

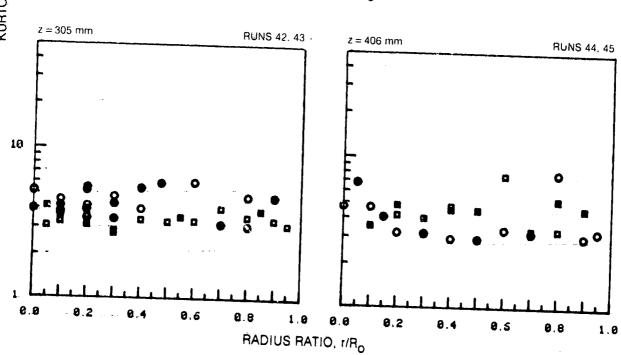
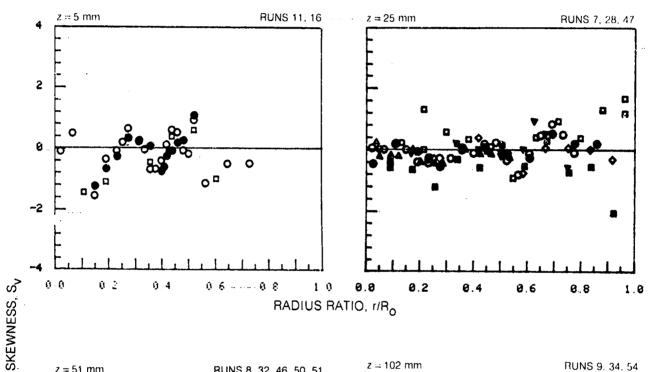

ORIGINAL PAGE IS OF POOR QUALITY

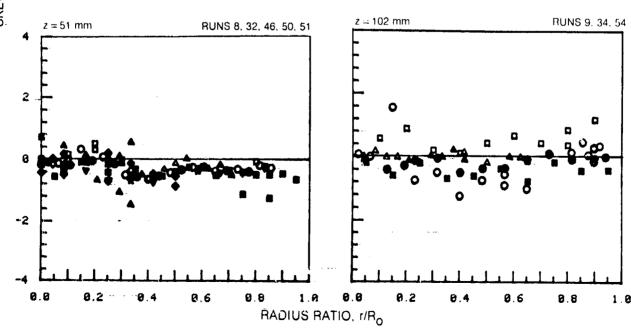
FIG. 39 (CONT.)

KURTOSIS OF AXIAL VELOCITIES PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS SOLIĎ SYMBOLS	# = 90°	"=0° "=180°

83-3-76-12A


R83-915540-26


ORIGINAL PAGE 18 OF POOR QUALITY SKEWNESS OF RADIAL VELOCITIES PROFILES

EIG. 40

	HORIZONTAL. TRAVERSE	VÉŘŤICAL TRAVERSE
OPEN SYMBOLS	#= 90°	η:: Θ°
SOLID SYMBOLS	"= 270°	″ = 180°

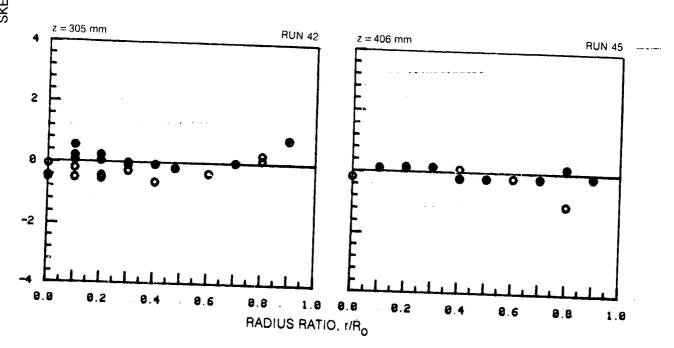
SYMBOL	G	•			Δ	A	♦	•	▽	₩.
RUN NOS	11, 7,	8, 9	16, 28,	32, 34	47, 4	6, 54	5	0	5	1

83-3-76-10

ORIGINAL PAGE IS OF POOR QUALITY

(1)

R83-915540-26


FIG. 40 (CONT.)

SKEWNESS OF RADIAL VELOCITIES PROFILES (CONT.)

	HORIZCINTAL TRAVÉRSÉ	VERTICAL TRAVERSE
OPEN SYMBOLS SOLID SYMBOLS	#= 90° #= 270°	#=0° #=180°

SYMBOL	0	•			Δ	A
RUN NOS	15, 10	. 42	36, 38	3, 45	4	1

3-3-76-10A

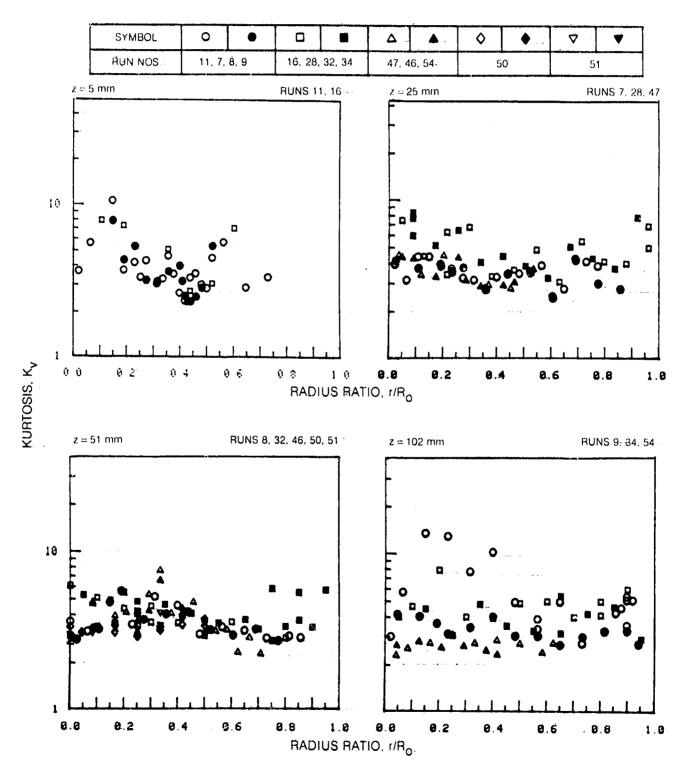

ORIGINAL PAGE IS OF POOR QUALITY

FIG. 41.

KURTOSIS OF RADIAL VELOCITIES PROFILES

	HORIZONTAL TRAVERSE	VÉRTICAL TRAVÉRSE
OPEN SYMBOLS.	″ = 90 °	" = 0°
SOLID SYMBOLS	n = 270°	"= 180°

83-3-76-9

R83-915540-26

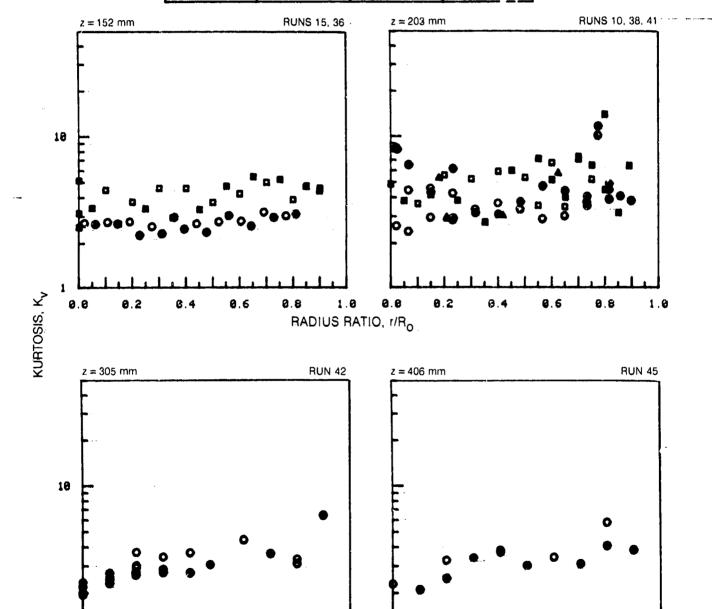

ORIGINAL PAGE IS OF POOR QUALITY

FIG. 41 (CONT.)

KURTOSIS OF RADIAL VELOCITIES PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBÖLS.	# = 90°	##0°	
SOLID SYMBOLS:	# £ 270°	# == 180°	

SYMBOL	0	•			Δ	•
RUN NOS	15, 10), 42	36, 3	8, 45	1	11

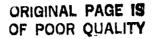
83--3--76--9A....

1.0

1.0

RADIUS RATIO, r/R_O

0.0

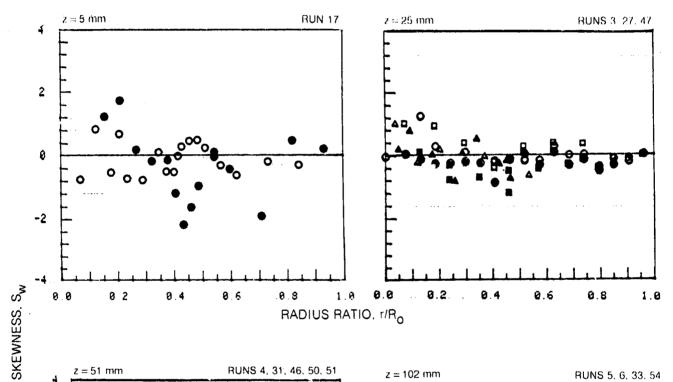

0.2

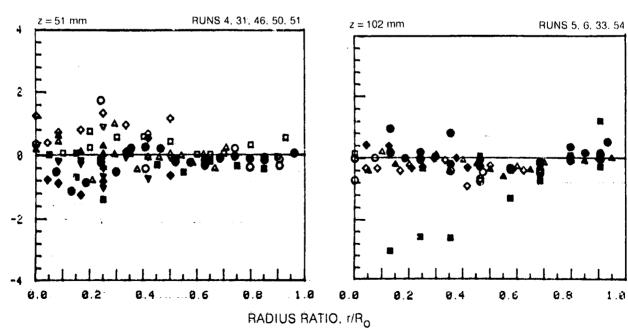
0.4

0.6

0.0

0.8


R83-315540-26


FIG. 42

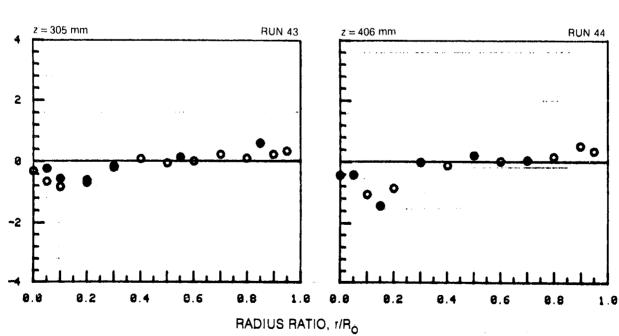
SKEWNESS OF AZIMUTHAL VELOCITIES PROFILES

	HORIZONTAL TRAVĒRSĒ	VEÄTICAL TRAVERSE
OPEN SYMBOLS.	#=90°	#=0°
SOLID SYMBOLS	"=270°	u = 480°

SYMBOL	0	•	۵		Δ	٨	\Q	•	▽	₩
RUN NOS	17, 3,	4, 5	27, 3	31, 6	47, 40	5. 33	50	. 54		51

83-3-76-8


ORIGINAL PAGE IS

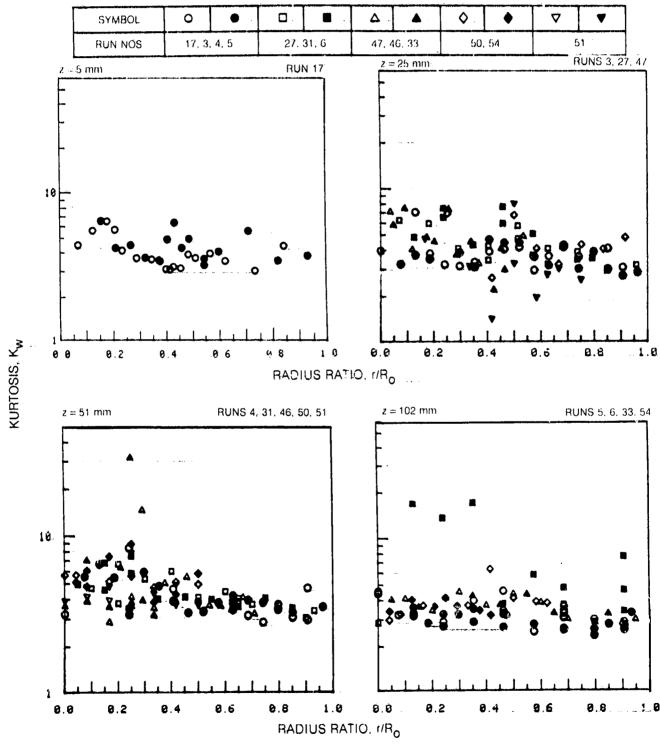

FIG. 42 (CONT.)

SKEWNESS OF AZIMUTHAL VELOCITIES PROFILES (CONT.)

	HORIZÓNTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS	#= 90°	H = 0°
SOLID SYMBOLS	#=270°	#= 180°

SYMBOL	0	•			Δ	A
RUN NOS	14, 12, 43, 44		35, 37-		40	

83-3-76-8A --


ORIGINAL PAGE IN OF POOR QUALITY

R83-915540-26

FIG. 43

KURTOSIS OF AZIMUTHAL VELOCITIES PROFILES

	HOŘIZONTAL TRAVĚŘSE	VERTICAL TRAVERSE
OPEN SYMBOLS	#= 90°	# = 0°
SOLID SYMBOLS	#=270°	# = 180°

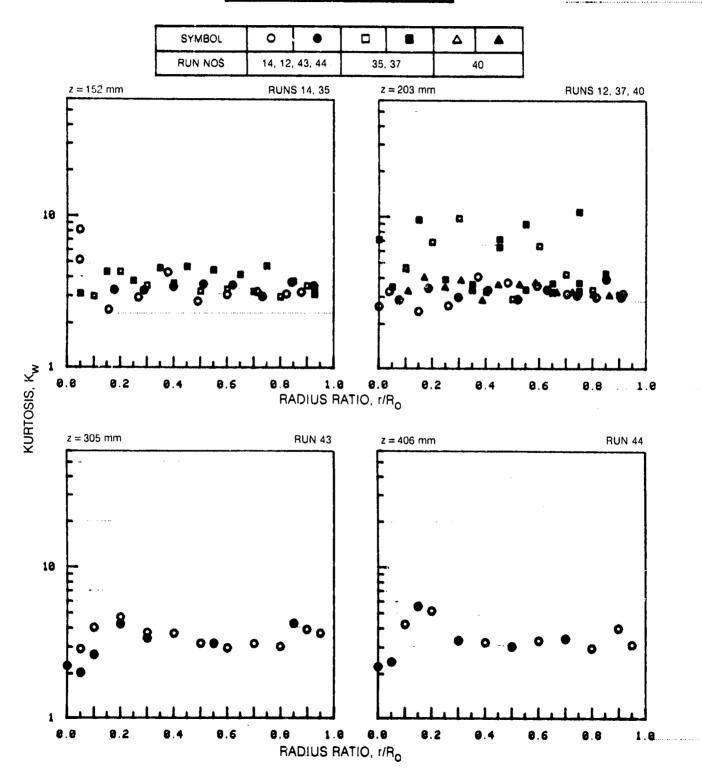
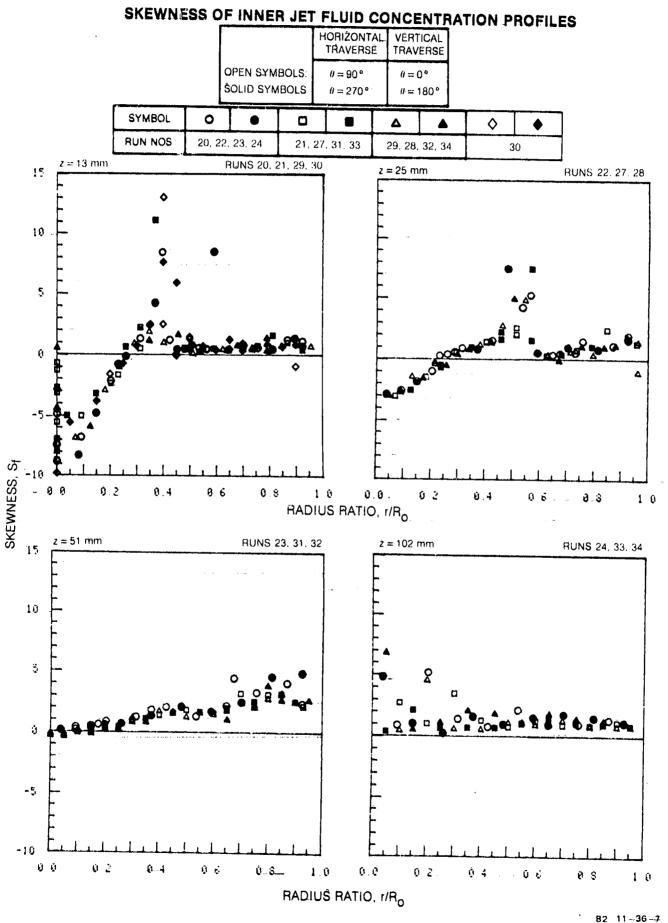

83-3-76-7

FIG. 43 (CONT.)

KURTOSIS OF AZIMUTHAL VELOCITIES PROFILES (CONT.)

ORIZONTAL TRAVERSE	VERTICAL TRAVERSE		
# = 90°	# 0.º # ≠ 180°		
	TRAVERSE		



C-3

83-3-76-7A

R83-915540-26

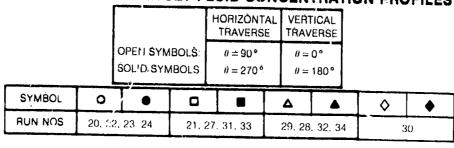
FIG. 44

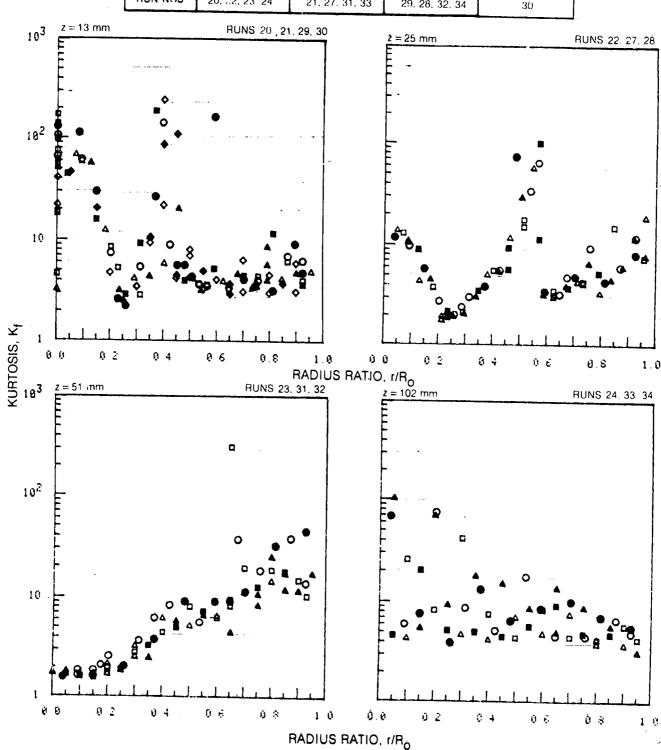
ORIGINAL PAGE TO OF POOR QUALITY

SKEWNESS OF INNER JET FLUID CONCENTRATION PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS: SOLID SYMBOLS:		$\theta = 0$ ° $\theta \doteq 180$ °.

SYMBOL	0	•	ט		Δ	A
RUN NOS.	25.	26	35.	37	36.	38



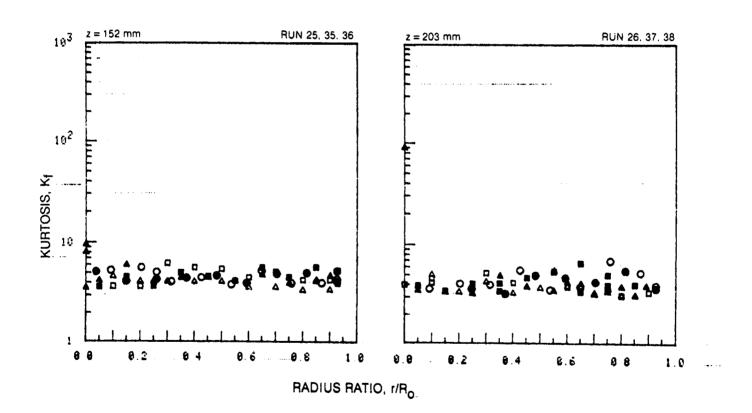

ORIGINAL PAGE IS OF POOR QUALITY

R83-915540-26

FIG. 45

82 11 36<u>+</u>5

194



ORIGINAL PAGE IS

KURTOSIS OF INNER JET FLUID CONCENTRATION PROFILES (CONT)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS: SOLID SYMBOLS:		θ = 0° θ = 180°

SYMBOL	0	•	0	•	Δ	A
RUN NOS	25.	26	35,	37	36.	38


TURBULENT MOMENTUM TRANSPORT RATE, UV, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION: 25 mm

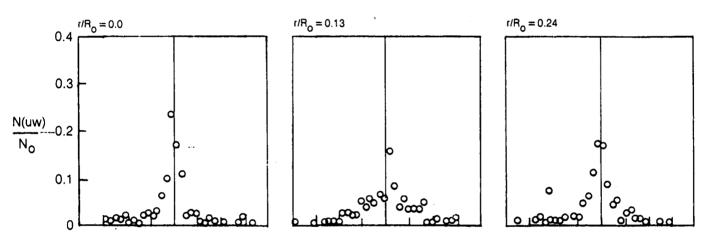
DATA FROM RUN 7

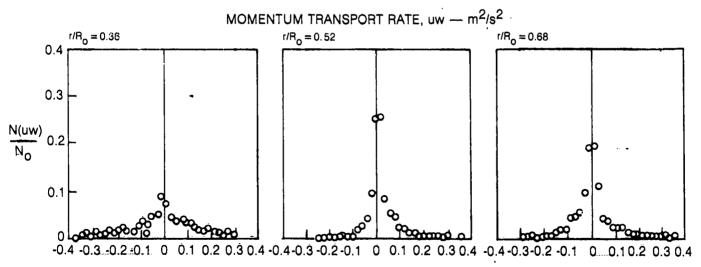
r/R _o	uv	σ _{uv}	S _{uv}	K _{uv}
0.00	-0.0003	0.060	1.58	19.27
0.13	0.0118	0.055	-0.04	6.19
0.24	0.0083	0.072	0.25	10.15
0.36	-0.0623	0.164	-1.11	8.21
0.52	-0.0119	0.041	-1.44	10.42
0.68	0.0254	0.085	1.26	12.50

 $\Delta(uv) = 0.02 \text{ m}^2/\text{s}^2$

MOMÉNTUM TRANSPORT RATE, uv — m²/s².

FIG. 47


TURBULENT MOMENTUM TRANSPORT RATE, UW, PROBABILITY DENSITY FUNCTIONS


AXIAL LÓCATION: 25 mm

DATA FROM RUN 3

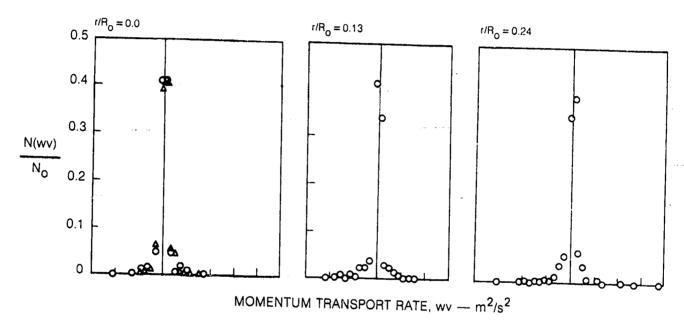
r/R _o	uw	$\sigma_{\sf uw}$	Suw	K _{uw}
0.00 0.13 0.24 0.36 0.52 0.68	0.0106 - -0.0008 -0.0007 -0.0018 0.0040 0.0004	0.055 0.074 0.062 0.127 0.033 -	0.42 0.18 -1.05 -0.16 0.79 0.46	8.47 6.13 12.94 5.55 10.21 20.01

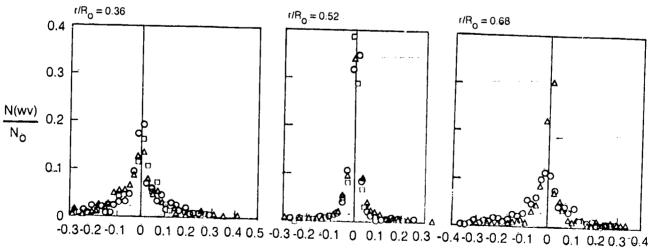
 $\Delta(uw) = 0.02 \text{ m}^2/\text{s}^2$

MOMENTUM TRANSPORT RATE, uw — m²/s²

①

FIG. 48


TURBULENT MOMENTUM TRANSPORT RATE, WV, PROBABILITY DENSITY FUNCTIONS

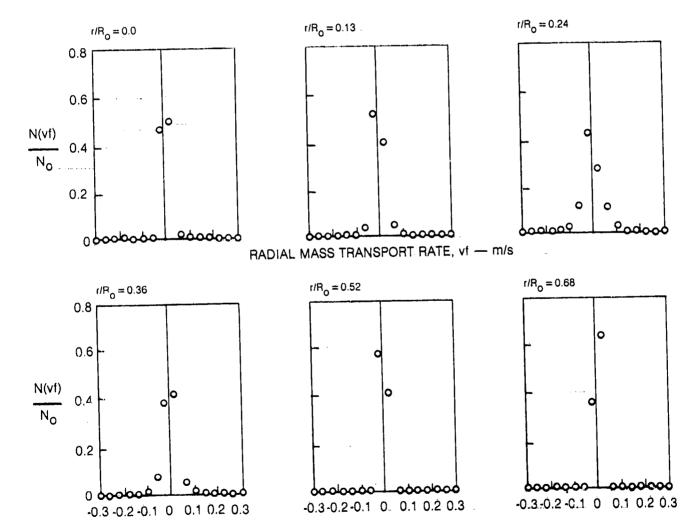

AXIAL LOCATION: 25 mm

AVERAGES OF DATA FROM RUNS 47(○), 48(□) AND 49(△)

r/R _o	wv	σ _{wv}	S _{wv}	K _{wv}
0.00 0.13 0.24 0.36 0.52 0.68	0.0023 0.0039 -0.0004 -0.0134 0.0035 0.0193	0.026 0.034 0.032 0.120 0.034 0.117	1.28 1.45 1.12 -0.15 0.37 1.64	14.8 12.5 23.4 7.9 14.5

 $\Delta(wv) = 0.1 \text{ m}^2/\text{s}^2$

MOMENTUM TRANSPORT RATE, wv — m²/s²


TURBULENT RADIAL MASS TRANSPORT RATE, VI, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION: 25 mm

DATA FRÖM RUN 28

r/R _o	vf	$\sigma_{ m vf}$	S _{vf}	K _{vf}
0.00	-0.0001	0.018	-1.38	28.8 —
0.13	0.0002	0.018	1.62	32.8
0.24	0.0004	0.056	0.87	15.0
0.36	0.0041	0.068	0.57-	12.7
0.52	-0.0004	0.003	0.13	22.3
0.68	-0.0001	0.002	-1.22	18.8

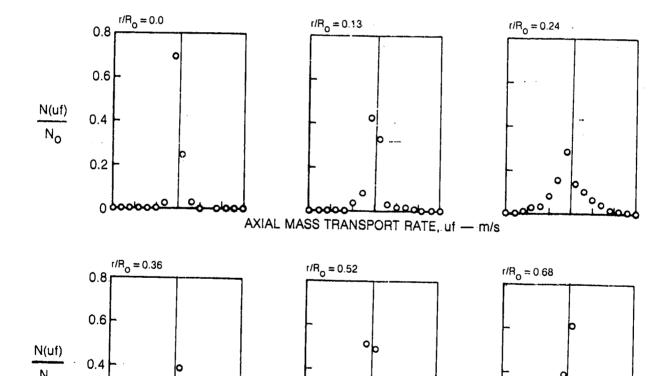
 $\Delta(vf) = 0.04 \text{ m/s}$

RADIAL MASS TRANSPORT RATE, vf -- m/s

83-7-19-4

0.2

-0.3-0.2-0.1 0 0.1 0.2 0.3


TURBULENT AXIAL MASS TRANSPORT RATE, uf, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION: 25.mm...

DATA FROM RUN 22

r/R _o	uf	$\sigma_{ m uf}$	s _{uf}	K _{uf}
0.00 0.13 0.24 0.36 0.52 0.68	0.0052 0.0137 0.0318 -0.0020 0.0001	0.039 0.089 0.105 0.045 0.003 0.003	9.17 1.13 0.82 -0.38 6.30 -1.65	110.6 21.7 6.9 6.6 137.7

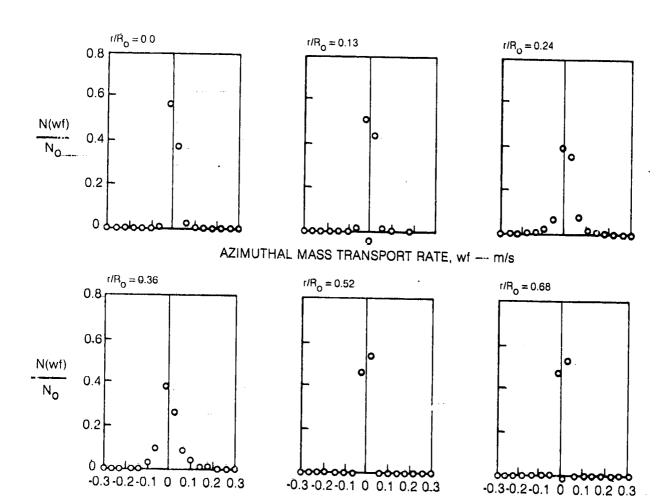
 $\Delta(uf) = 0.04 \text{ m/s}$

AXIAL MASS TRANSPORT RATE, uf - m/s

-0.3.20.2-0.1 0 0.1 0.2 0.3

-0.3-0.2-0.1 0 0.1 0.2 0.3

FIG. 51


TURBULENT AZIMUTHAL MASS TRANSPORT RATE, WI, PROBABILITY DENSITY FUNCTIONS

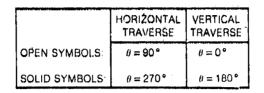
AXIAL LOCATION: 25 mm

DATA FROM RUN 27

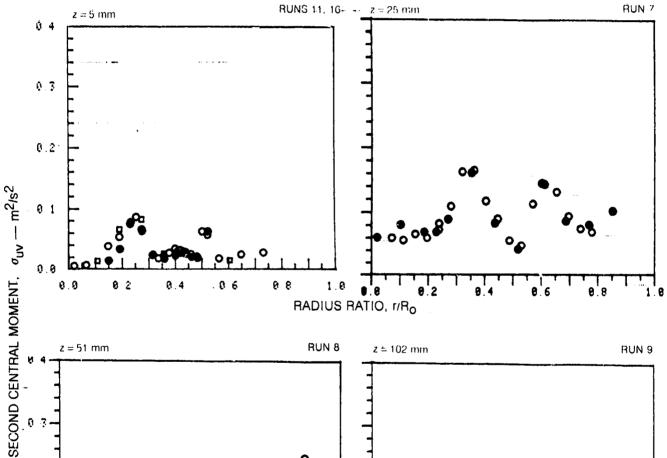
r/R _o	wf	$\sigma_{ m wf}$	S _{wf}	K _{wl}
0.0	-0.0001	0.022	-1.56	42.2
0.13	0.0002	0.028	-1.30	18.2
0.24	0.0187	0.057	1.39	15.0
0.36	-0.0005	0.041	0.76	12.8 –
0.52	0.0003	0.006	3.76	75.1
0.68	0.0003	0.003	-2.78	30.2

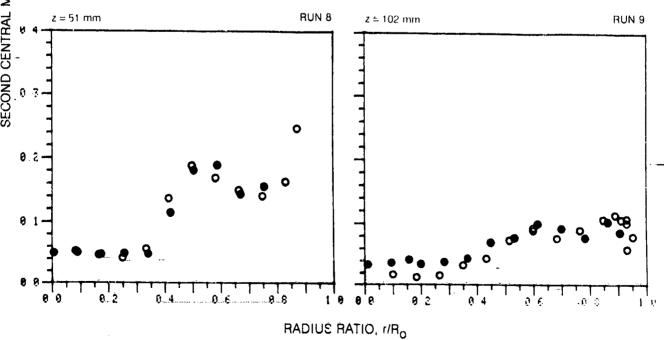
 $\Delta(wf) = 0.04 \text{ m/s}$

AZIMUTHAL MASS TRANSPORT RATE, wf - m/s.


83-7-19-2

ORIGINAL PAGE IS OF POOR QUALITY


R83-915540-26


FIG. 52

SECOND CENTRAL MOMENT OF UV TURBULENT TRANSPORT. RATE PROFILES

SYMBOL	0	•	\$	•
RUN NOS.	11, 7	. 8. 9	1	6

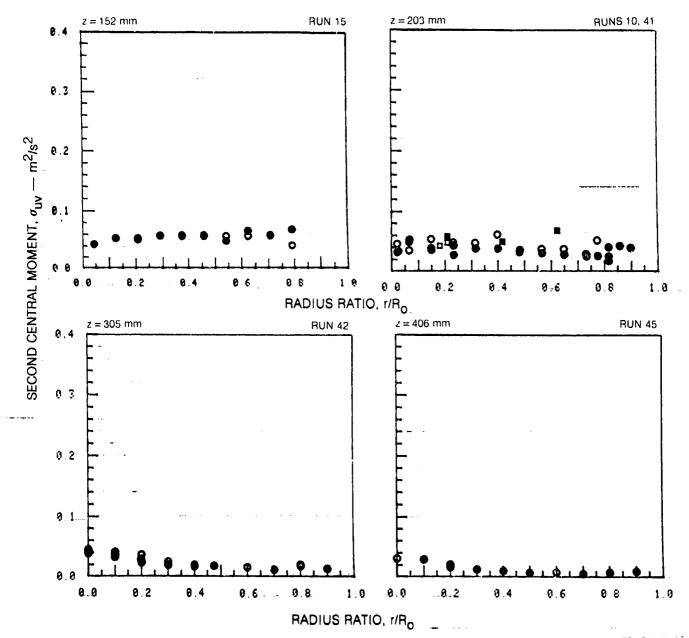

82_10_33 23

FIG. 52 (CONT.)

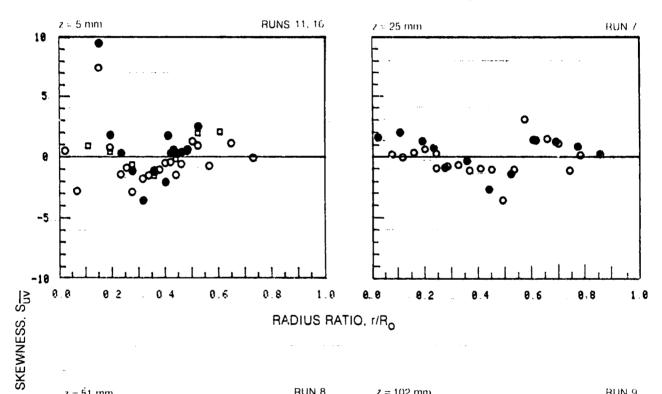
SECOND CENTRAL MOMENT OF UV TURBULENT TRANSPORT RATE PROFILES (CONT.)

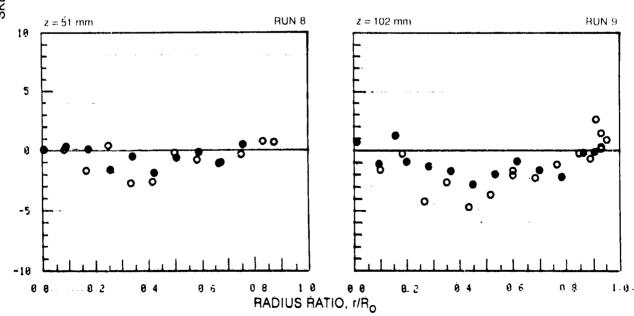
	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE	
OPEN SYMBOLS	θ ± 90°	# = 0 °	
SOLID SYMBÖLS.	<i>tt</i> = 270°.	#= 180°	

SYMBÓL	0	•		
RUN NOS	15, 10,	42, 45	4	1

83-3-76-13

ORIGINAL PAGE IS


R83-915540-26


FIG. 53....

SKEWNESS OF UV TURBULENT MOMENTUM TRANSPORT RATE PROFILES

	HORIŽONTAL TRAV', ŘSÉ	VERTICAL TRAVERSE
OPEN SYMBOLS	# = 90°	"=0°
SOLID SYMBOLS	# = 270°	#= 180¢

SYMBOL	0	•		
RUN NOS	11, 7	, 8, 9	1	G

83 - 3 - 76 6

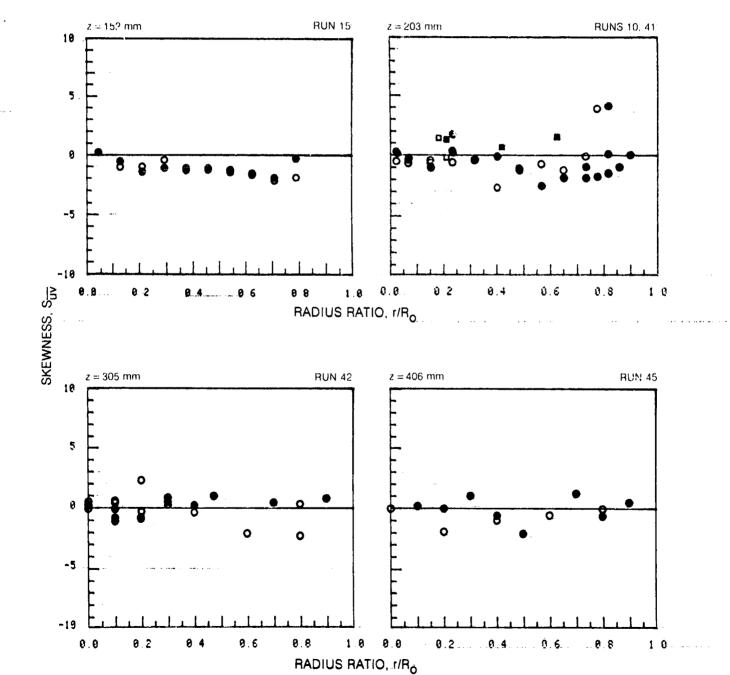

R83-915540-26

FIG. 53 (CONT.)

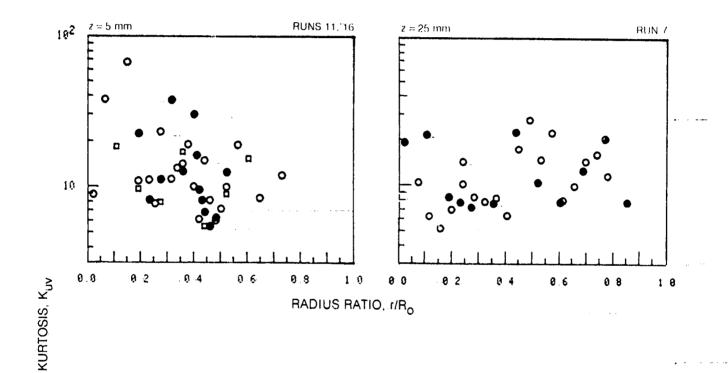
SKEWNESS OF UV TURBULENT MOMENTUM TRANSPORT RATE PROFILES (CONT.)

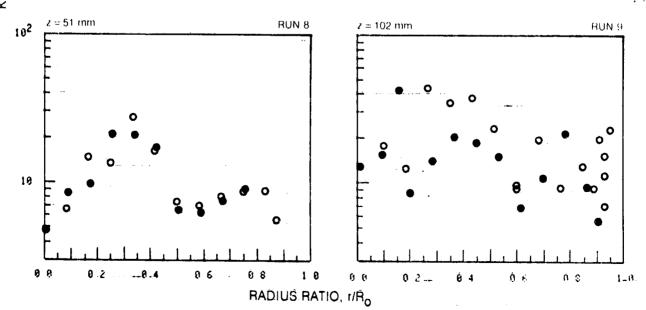
	HORIZONTAL TRAVERSE	VÉRTICAL TRAVERSÉ
OPEN SYMBOLS	#= 9Ò°	θ = 0°
SOLID SYMBOLS	# = 270°	θ = 180°

SYMBOL	0	•		
RUN NOS	15. 10,	42, 45	4	1

83-3-76-6A

ORIGINAL PAGE IS OF POOR QUALITY


R83-915540-26

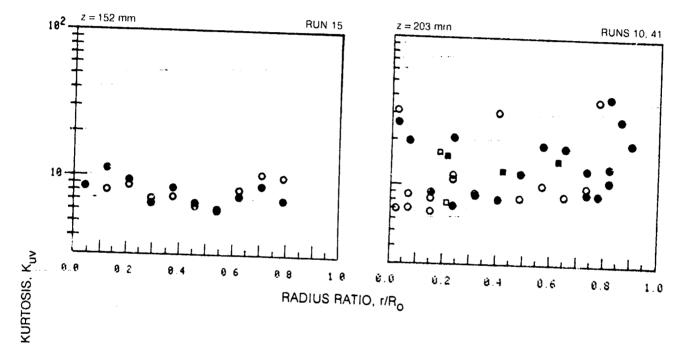

FIG. 54

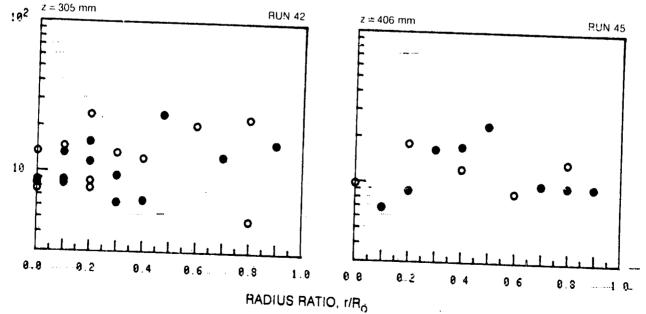
KURTOSIS OF UV TURBULENT MOMENTUM TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS	# = 90°	#=0°
SOLID SYMBOLS	#= 270°	#= 180°

SYMBOL	0	•		
RUN NOS	11, 7,	8. 9	1	6

83 - 3 - 76 - 5

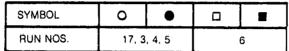

ORIGINAL PAGE IS

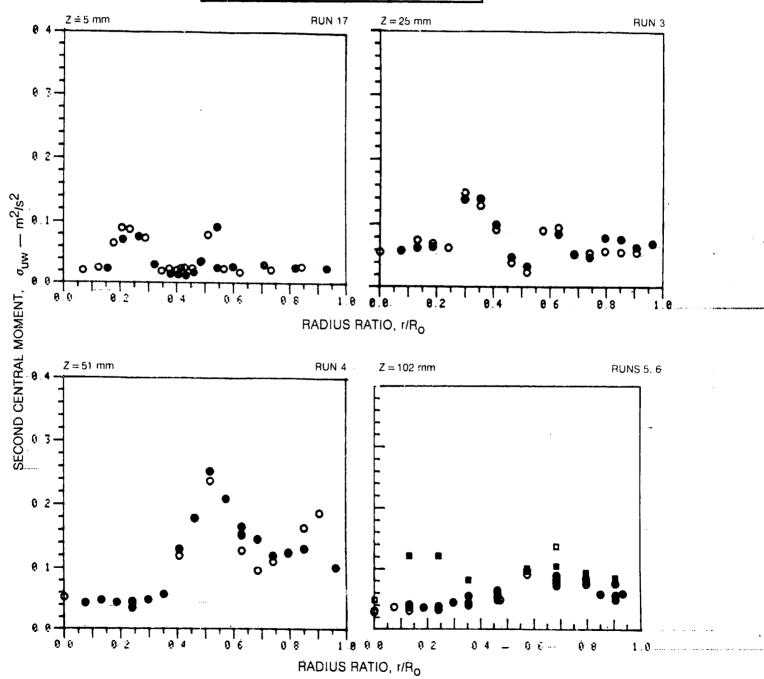

EIG. 54 (CONT.)

KURTOSIS OF UV TURBULENT MOMENTUM TRANSPORT RATE PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPĖN SYMBOLS.	θ = 90°	# = 0°
SOLID SYMBOLS:	θ = 270°	#= 180°

SYMBÖL	0	•		
RUN NOS	15, 10,	42, 45	4	1




83-3-76-5A

SECOND CENTRAL MOMENT OF UW TURBULENT TRANSPORT RATE PROFILES.

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPĖN ŠYMBOLS:	θ = 90°	θ = 0°
SOLID SYMBOLS	θ = 270°	θ = 180°

ORIGINAL PAGE IS OF POOR QUALITY

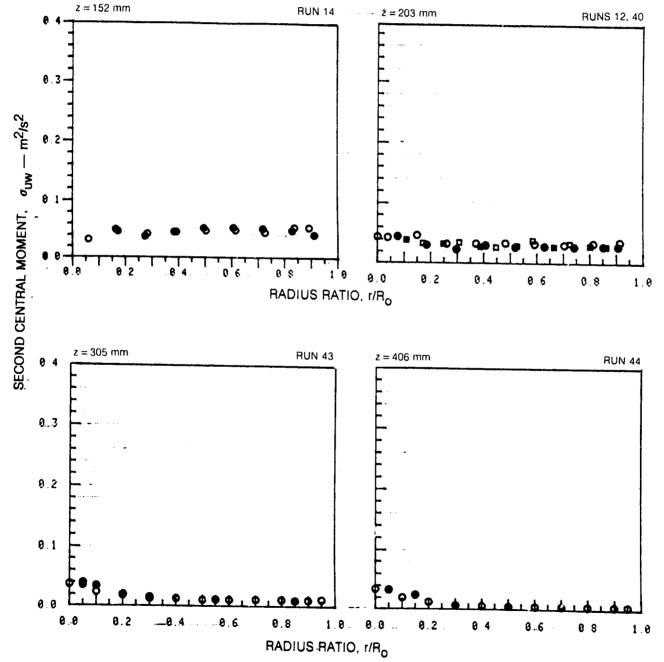
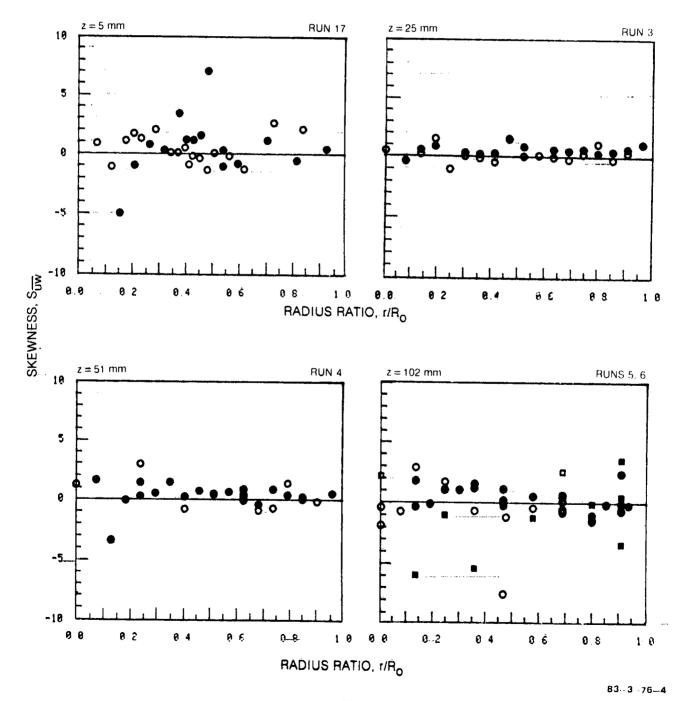

R83-915540-26

FIG. 55 (CONT.)

SECOND CENTRAL MOMENT OF UW TURBULENT TRANSPORT RATE PROFILES (CONT.)

HÖRIZONTAL TRAVERSE	VERTICAL TRAVERSE
$\theta = 90^{\circ}$ $\theta = 270^{\circ}$	θ = 0° θ = 180°
	TRAVERSE θ = 90°

SYMBOL	0	•	0	•
RUN NOS.	14, 12,	43, 44	40)


83-3-76-16

ÉIG, 56

SKEWNESS OF UW TURBULENT MOMENTUM TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSÉ	VERTICAL TRAVERSE
OPEN SYMBOLS	# = 90°	#=0°
SOLID SYMBOLS	θ = 270°	θ = 180°

SYMBOL	0	•		
RUN NOS.	17, 3	, 4, 5	6	3

ORIGINAL PAGE IS OF POOR QUALITY

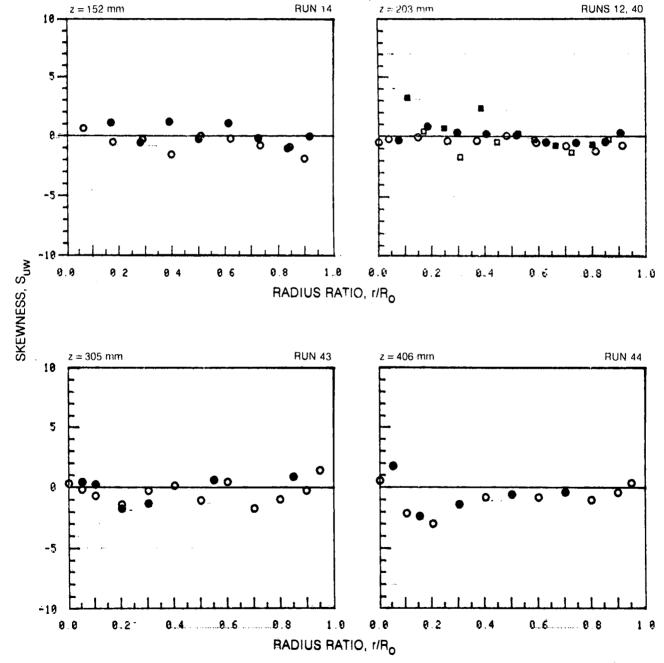

R83-915540-26

FIG. 56 (CONT.)

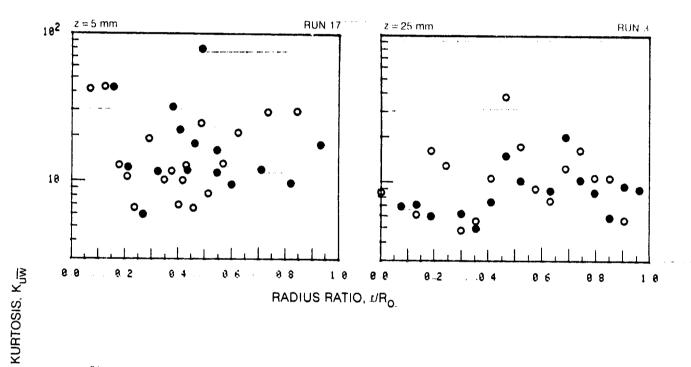
SKEWNESS OF UW TURBULENT MOMENTUM TRANSPORT RATE PROFILES (CONT.)

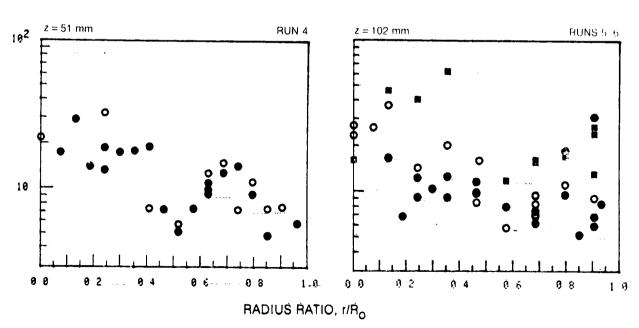
	HORIZONTAL TRAVERSE	VERTICAL- TRAVERSE
OPEN SYMBOLS.	θ = 90°	θ = 0°
SOLID SYMBÓLS:	<i>θ</i> = 270 °	θ = 180°

SYMBOL	0	•		
RUN NOS.	14, 12,	43, 44	4	0

83-3-76-4A

2 1. 1....



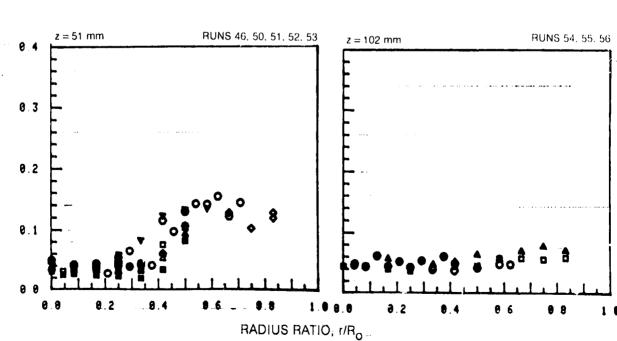

EIG. 57

KURTOSIS OF UW TURBULENT MOMENTUM TRANSPORT RATE PROFILES

	HORIŽONTAL TRAVERSE	VERTICAL TRAVERSE		
OPEN SYMBOLS	#=90°	#=0°		
SOLID SYMBOLS	θ = 270°	#=180°		

SYMBOL.	0	•			
RUN NOS	17, 3,	4. 5	6		

M 2/3 MINIMALI #34 76. 3


FIG. 58

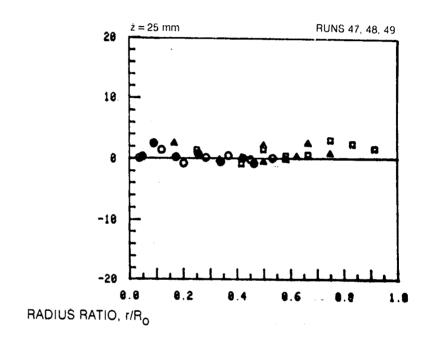
SECOND CENTRAL MOMENT OF WV TURBULENT TRANSPORT RATE PROFILES

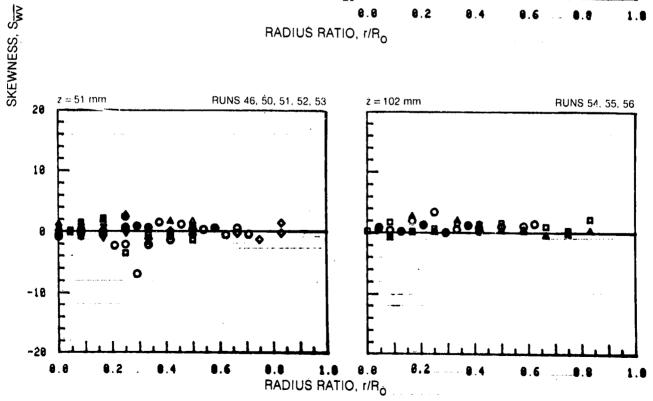
	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE		
OPEN SYMBOLS:	u= 90°	#=0°		
SOLID SYMBOLS:	<i>u</i> = 270°	u = 180°		

SYMBOL	0	•		6	Δ	A	\Diamond	•	▽	₩
RUN NOS:	47, 4	6, 54	48, 50, 55		49, 51, 56		52		53	

PRECEDING PAGE BLANK NOT FILMED

83-1-58-3



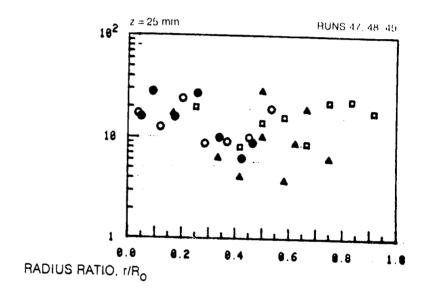

FIG. 59

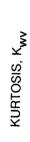
SKEWNESS OF WV TURBULENT MOMENTUM TRANSPORT RATE PROFILES

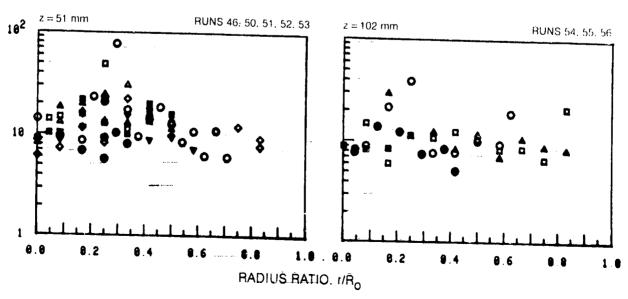
	HÓRIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.		#=0° #=180°

SYMBOL	0	•			Δ	A	♦	•	▽	₩
RUN NOS	47, 4	6, 54	48, 5	0, 55	49, 5	1, 56	5	52		53

83-3-76-2

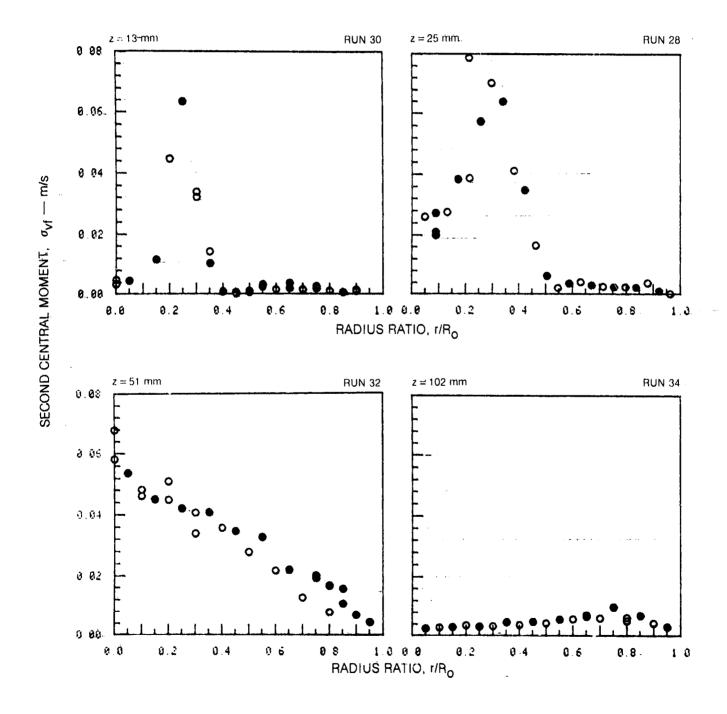




FIG. 60


KURTOSIS OF WV TURBULENT MOMENTUM TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS	u = 90 °	#= 0°
SOLID SYMBOLS	#= 270°	#= 180°

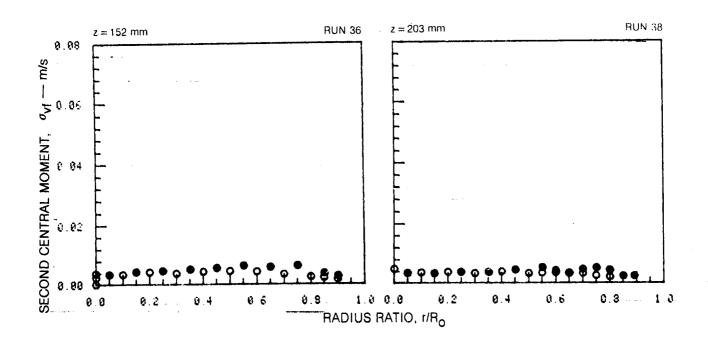
SYMBOL	0	•			Δ	A	\Q	•	V	
RUN NOS	47, 46	3, 54	48, 5	0, 55	49, 5	1, 56	5	2	5:	3



83--3--76 - 1

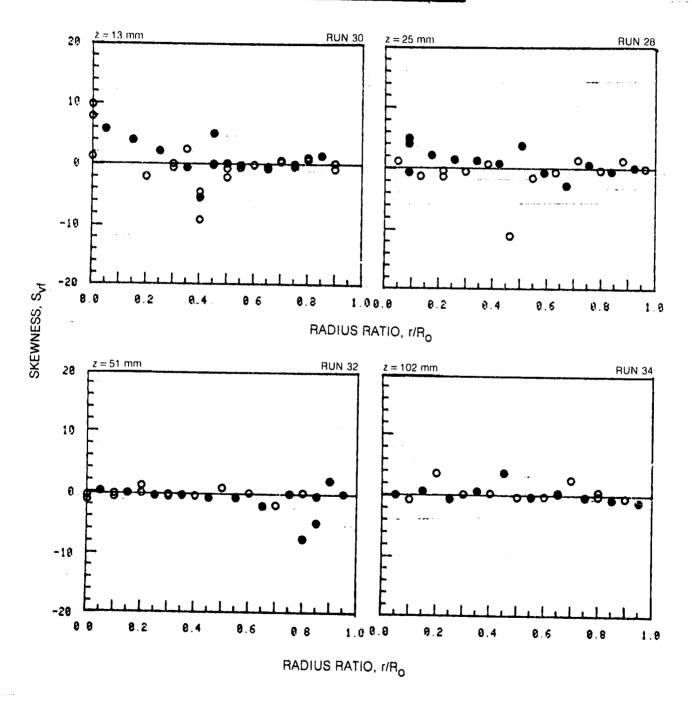
SECOND CENTRAL MOMENT OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS: SOLID SYMBOLS:		θ = 0° θ = 180°



ORIGINAL PAGE TO OF POOR QUALITY

SECOND CENTRAL MOMENT OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES (CONT.)


	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	# = 90°	# = 0°
SOLID SYMBOLS:	u = 270°	<i>t!</i> = 180°

ORIGINAL PAGE IS OF POOR QUALITY

SKEWNESS OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES

. •	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	#= 90°	() = O°
SOLID SYMBOLS:	u = 270°	#= 180°

83-2-55-18A

SKEWNESS OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES (CONT.)

	HORIZONŤAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS.	#=90°	#=0°
SOLID SYMBOLS:	# = 270°	∥=18Ŏ°

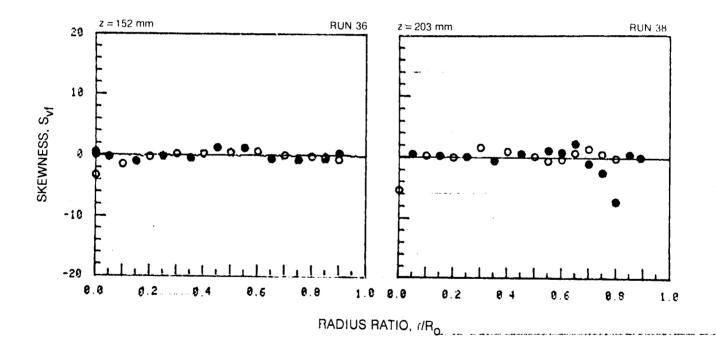
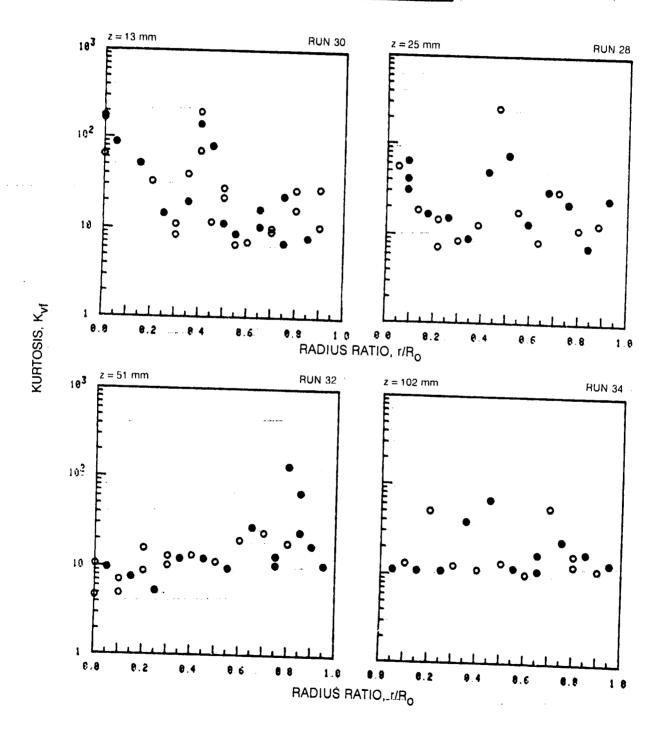
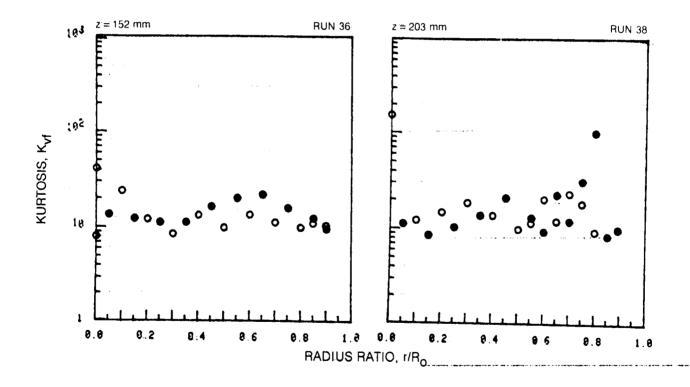
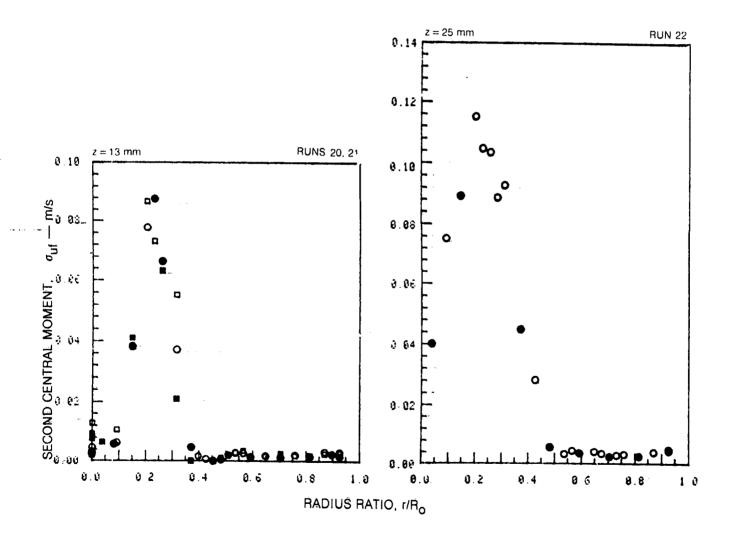



FIG. 63


KURTOSIS OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ=0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

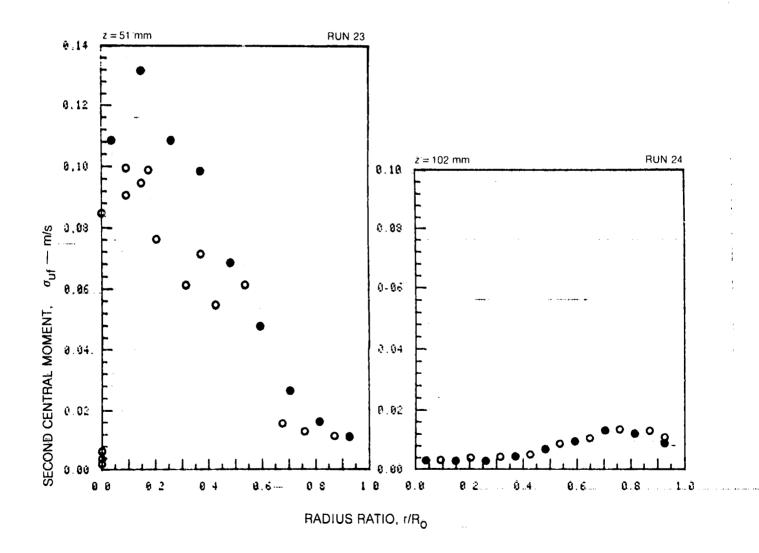
KURTOSIS OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES (CONT.)


	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	() = 90°	<i>u</i> = 0 °
SOLID SYMBOLS:	<i>0</i> = 270 °	#= 180°

SECOND CENTRAL MOMENT OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	#=0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

SYMBOL	0	•		
RUN NOS.	20, 22		2	<u>?</u> 1


83-2-55-14A

--- FIG. 64 b

SECOND CENTRAL MOMENT OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES (CONT.)

	HÖRIZÓNTAL TRAVÉRSE	VERTICAL TRAVERSE
OPEN SYMBOLS:		θ = 0°
SOLID SYMBOLS:	θ = 270°	# = 180° "

83-2-55-148---

ORIGINAL PAGE IS OF POOR QUALITY

SECOND CENTRAL MOMENT OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	<i>0</i> = 90 °	θ=0°
SOLID SYMBOLS:	# = 270°	#= 180°

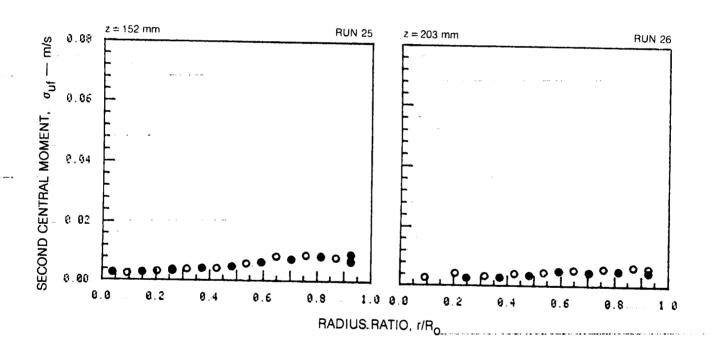
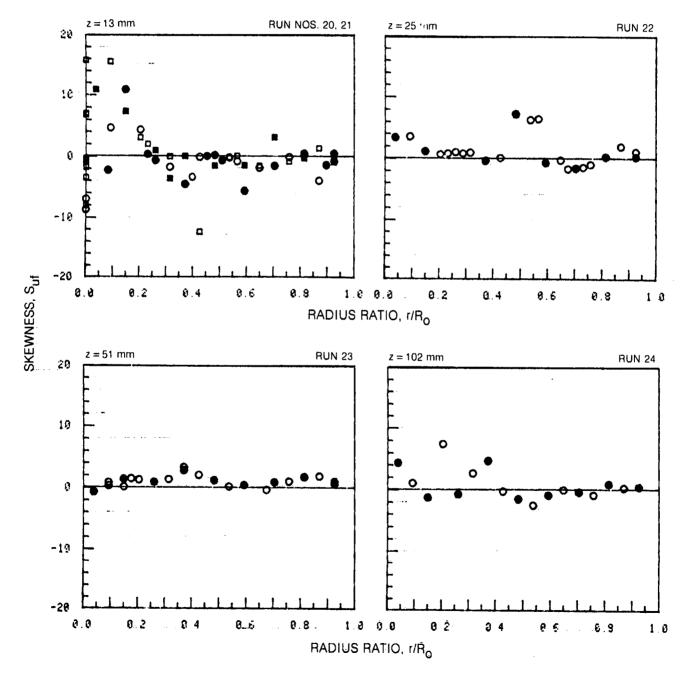
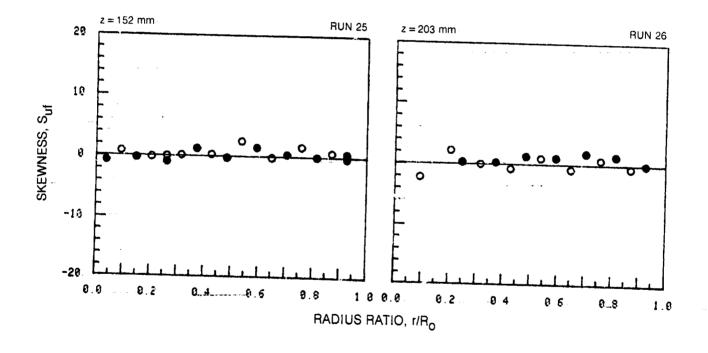



FIG. 65

SKEWNESS OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES.

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	<i>(t</i> = 90 °·	# 0.°
SOLID SYMBOLS:	<i>u</i> = 270°	∥=180°

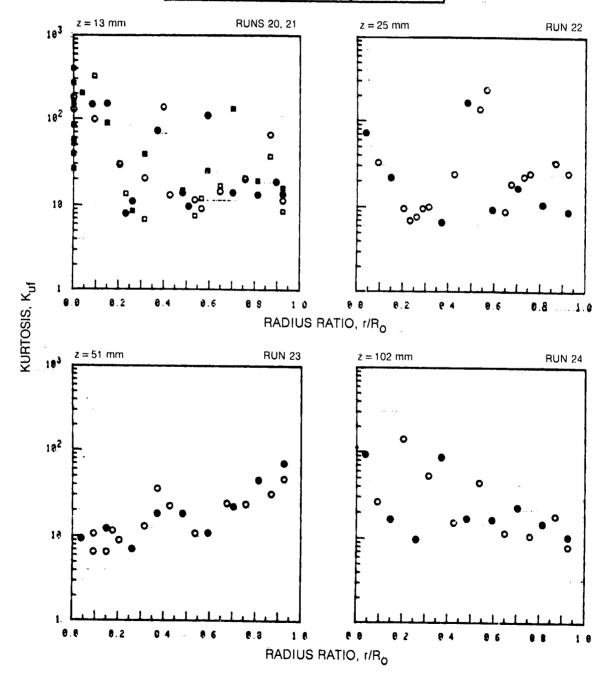
SYMBOL	0	•	0	•
RUN NOS.	20, 22, 23, 24		2	21

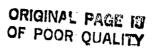


ORIGINAL PAGE IS OF POOR QUALITY

SKEWNESS OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES (CONT.)

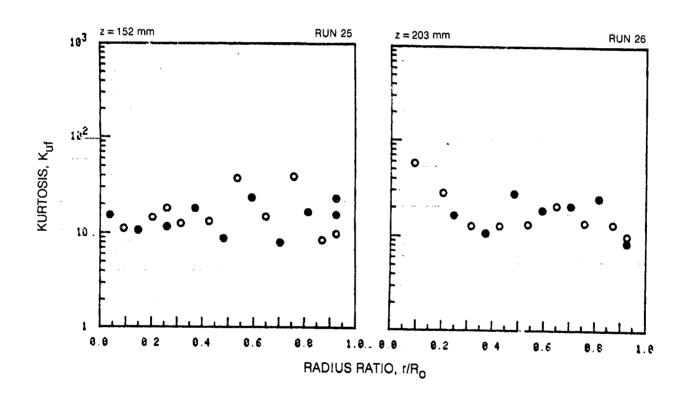
	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	<i>θ</i> = 90 °	$\theta = 0.$ °
SOLID SYMBOLS:	θ = 270°	θ = 180°~




KURTOSIS OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES

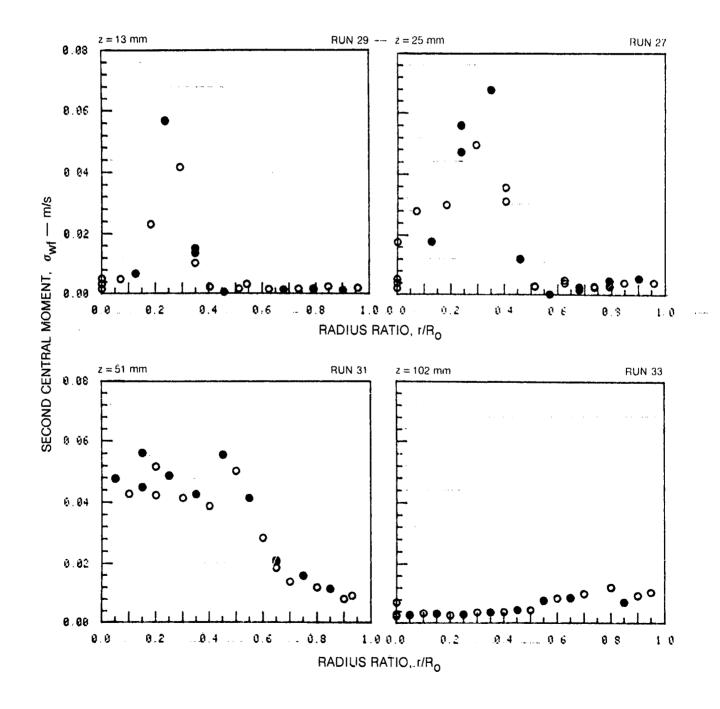
	HORIŽONŤAL TRAVERSÉ	VERTICAL TRAVERSE
OPEN SYMBOLS:	0 = 90°	# = O.º
SOLID SYMBOLS:	#= 270°-	//= 180°

SYMBOL	0	•	0	
RUN NOS.	20, 22,	23, 24		21



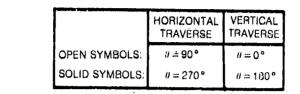
83-2-55-20A

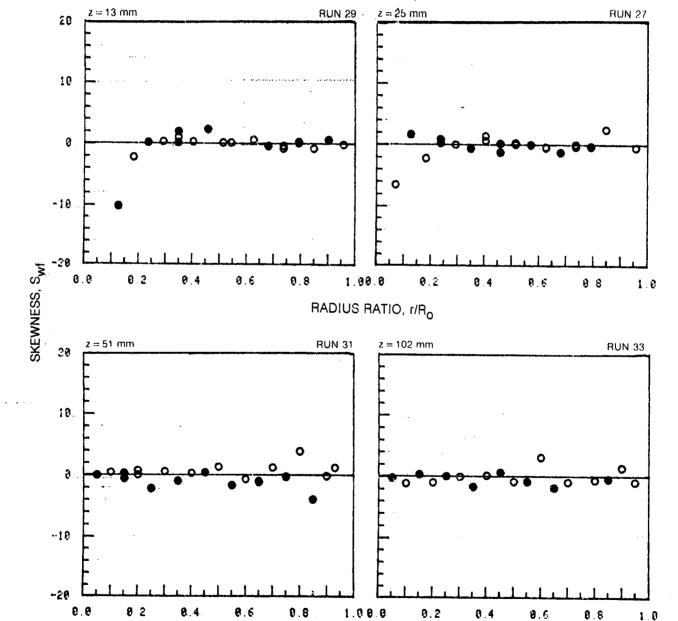
KURTOSIS OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES (CONT.)


	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ = 0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

SECOND CENTRAL MOMENT OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES

	HORIZONTAL TRAVÉRSÉ	VERTICAL TRAVERSE
OPEN SYMBÓLS.	<i>u</i> = 90 °	# = 0°
SOLID SYMBOLS	u = 270°	# = 180°


ORIGINAL PAGE 19 OF POOR QUALITY

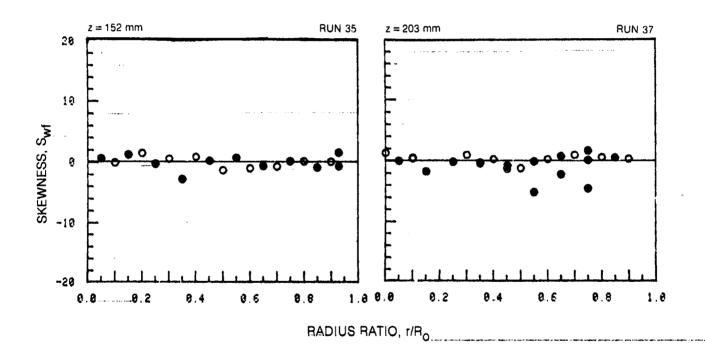

SECOND CENTRAL MOMENT OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	θ = 90°	θ = 0°
SOLID SYMBOLS:	θ = 270°	θ ± 180° ·

SKEWNESS OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES.

RADIUS RATIO, r/Ro.....

801-60-69-89


83--2-- 55-- 19A

ORIGINAL PAGE IS OF POOR QUALITY

SKEWNESS OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES (CONT.)

	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS:	<i>u</i> = 90 °	θ = 0°
SOLID SYMBOLS:	θ = 270°	θ = 180°

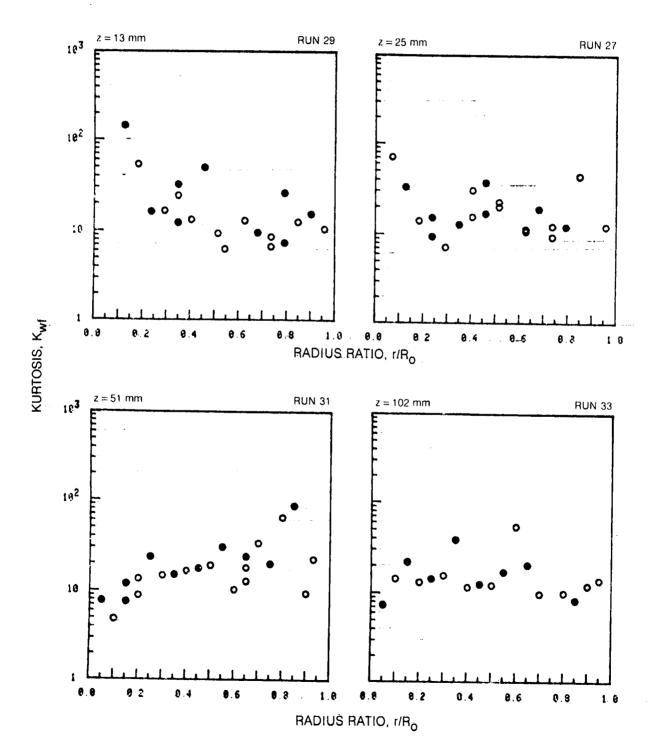
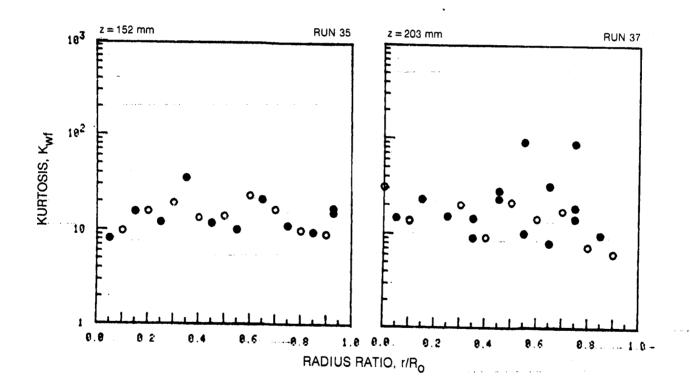

ORIGINAL PAGE IS

FIG. 69

KURTOSIS OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES

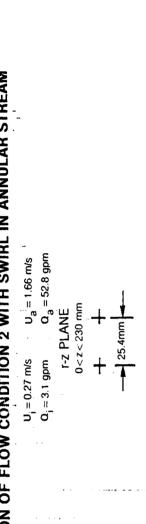
	HÓRIZÓNTAL TRAVERSE	VÉRTICAL TRAVERSÉ
OPEN SYMBOLS:	#= 90°	// = 0 °
SOLID SYMBOLS:	<i>u</i> = 270°	<i># ≃</i> 180°

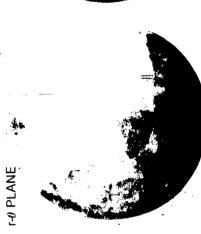


83-2-55-22A

ORIGINAL PAGE IN OF POOR QUALITY

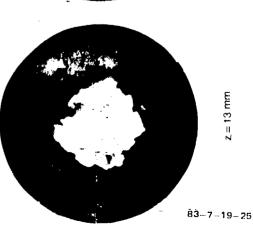
KURTOSIS OF TURBULENT AZIMUTHAL MASS TRANSPORT RATE PROFILES (CONT.)


	HORIZONTAL TRAVERSE	VERTICAL TRAVERSE
OPEN SYMBOLS: SOLID SYMBOLS:	y = 0 0	θ = 0° θ = 180°


83-2-55-21B

z = 102 mm

VISUALIZATION OF FLOW CONDITION 2 WITH SWIRL IN ANNULAR STREAM



z = 13 mm

DYE ADDED TO INNER STREAM z = 25 mm

z = 51 mm

DYE ADDED TO INNER STREAM

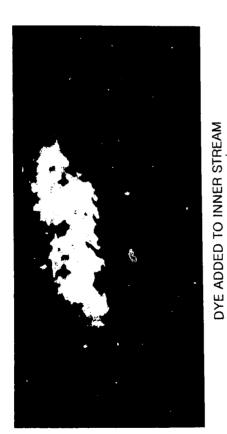
VISUALIZATION OF FLOW CONDITION 3 WITH SWIRL IN ANNULAR STREAM

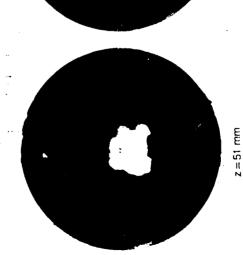
 $U_a = 1.66 \text{ m/s}$ $Q_a = 52.8 \text{ gpm}$

 $U_i = 2.08 \text{ m/s}$ $Q_i = 24.6 \text{ gpm}$

0 < z < 230 mmr-z PLANË

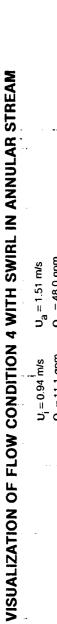
- 25.4mm




r-0 PLANE

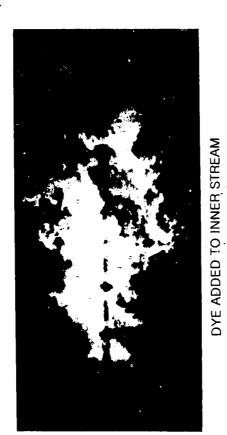
DYE ADDED TO INNER STREAM z = 102 mm

83-8-5-29

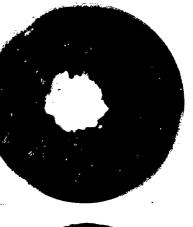

z = 203 mm

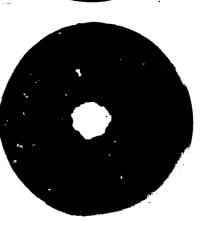
z = 102 mm

z = 51 mm


z :- 25 mm

83-8-5-27



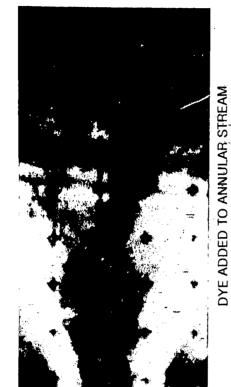

 $\int_{0}^{1} ds \qquad U_{a} = 1.51 \text{ m/s}$ $gpm \qquad Q_{a} = 48.0 \text{ gpm}$ rz PLANE0<z<230 mm

DYE ADDED TO INNER STREAM

R83-915540-26

VISUALIZATION OF FLOW CONDITION 5 WITH SWIRL IN ANNULAR STREAM

 $O_{a} = 94.8 \text{ gpm}$ $U_a = 2.87 \text{ m/s}$

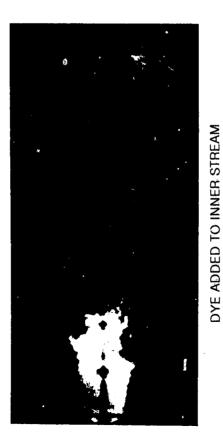

 $U_1 = 0.94 \text{ m/s}$ $Q_1 = 11.1 \text{ gpm}$

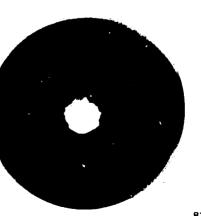
0<z<230 mm r-z PLANE

25.4mm


ORIGINAL PAGE IS OF POOR QUALITY

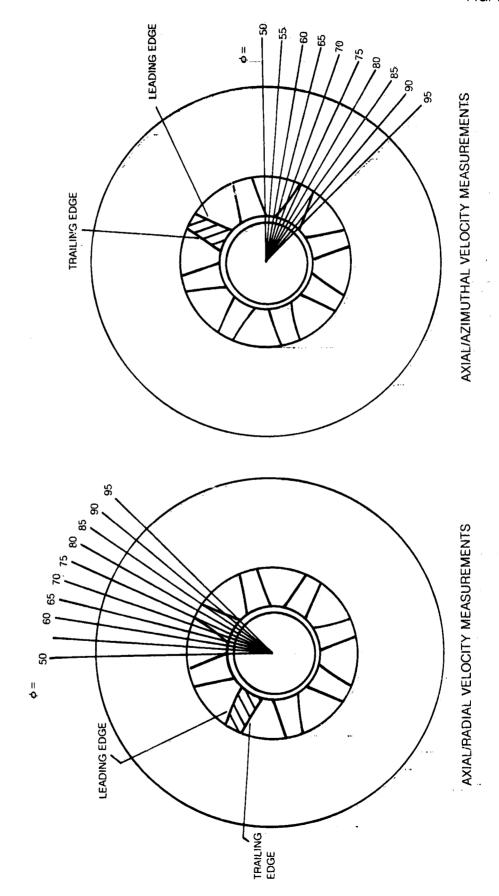
FIG. 73

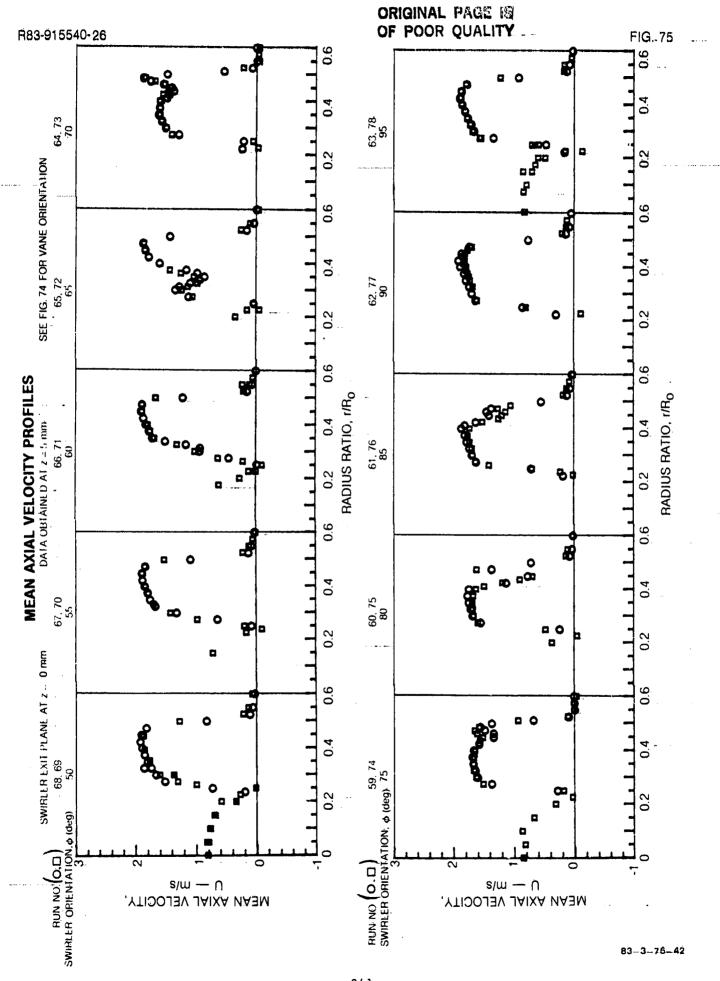



z = 25 mm

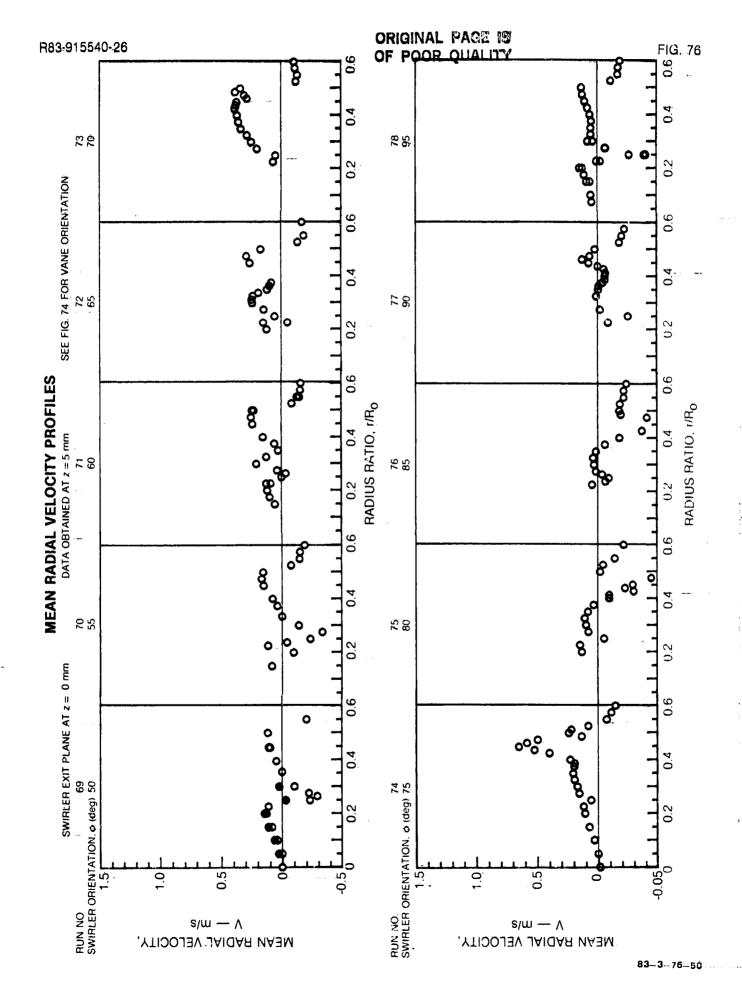
r-0 PLANE

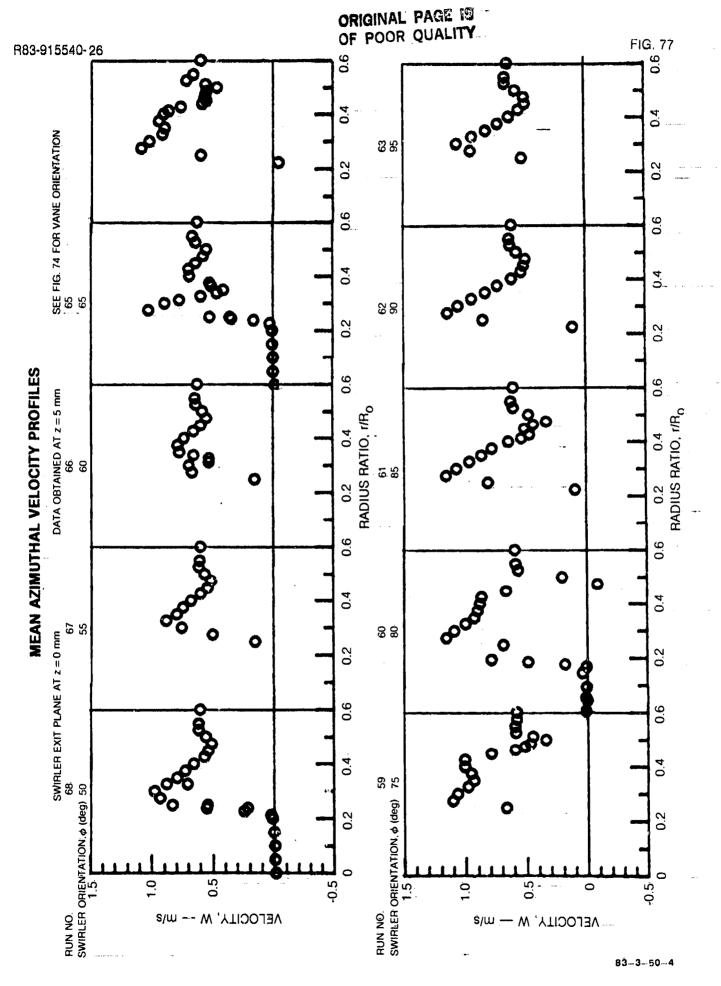
83-7-19-26

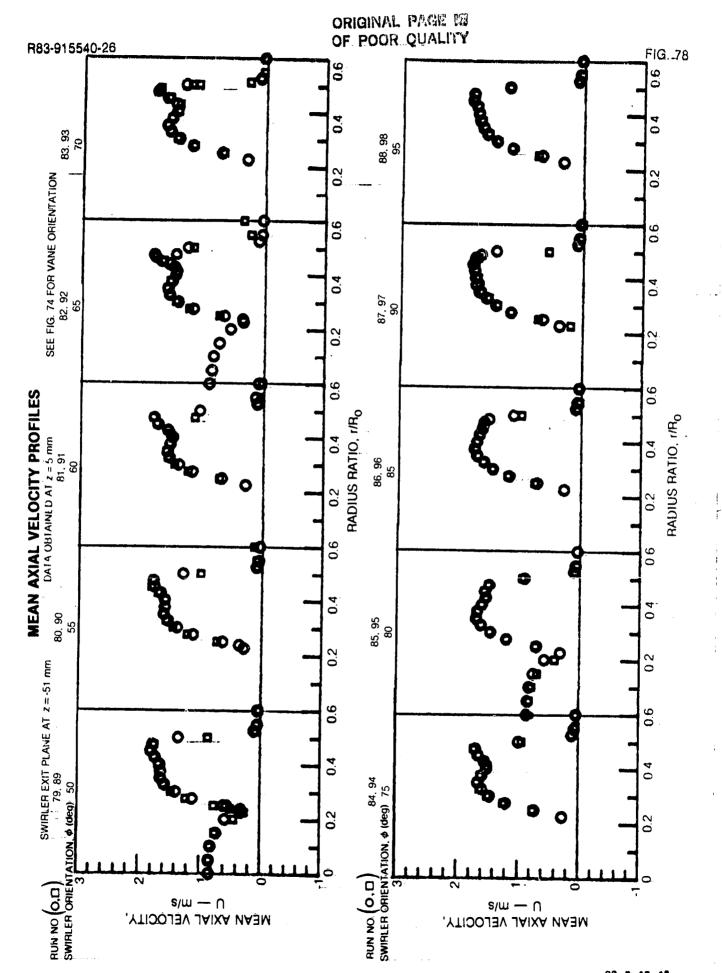

z = 13 mm

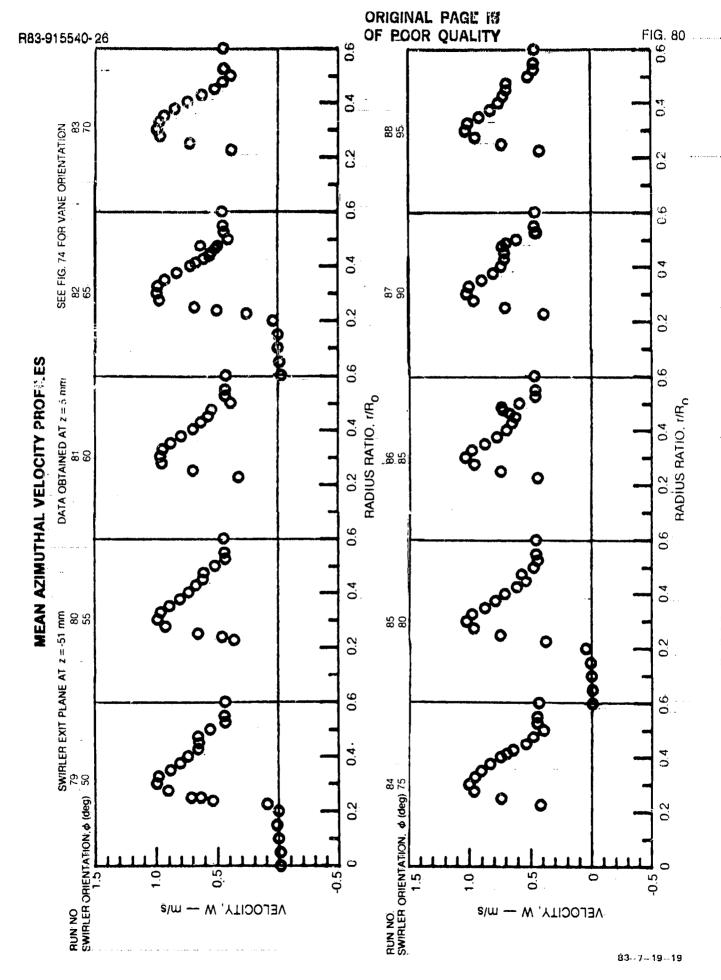

FIG. 74

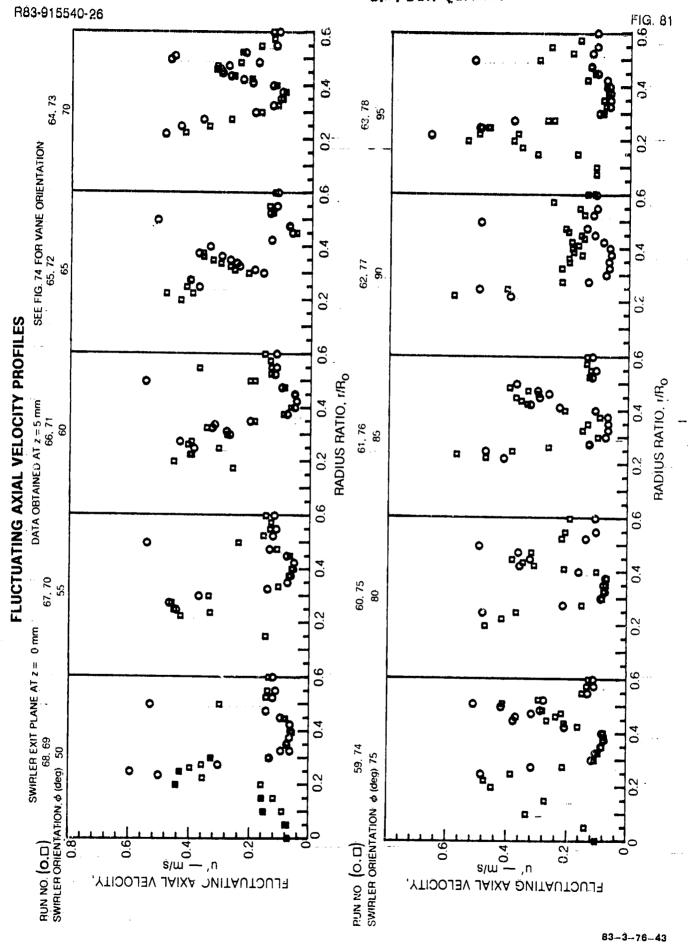
BLADE PASSAGE MEASUREMENTS

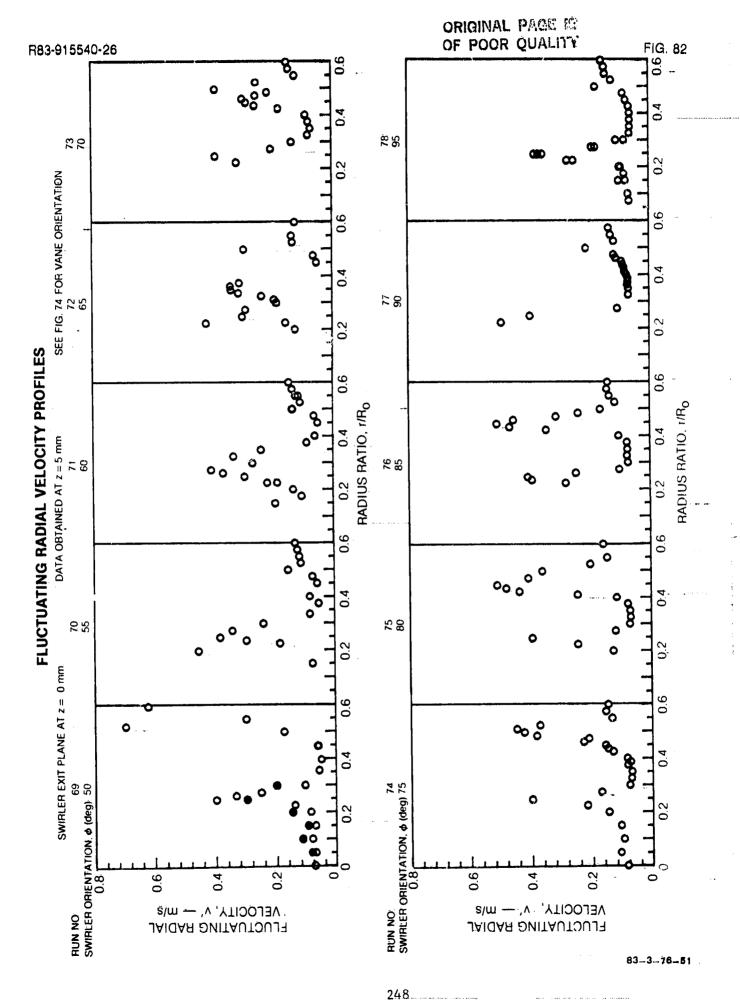

SWIRLER ORIENTATION

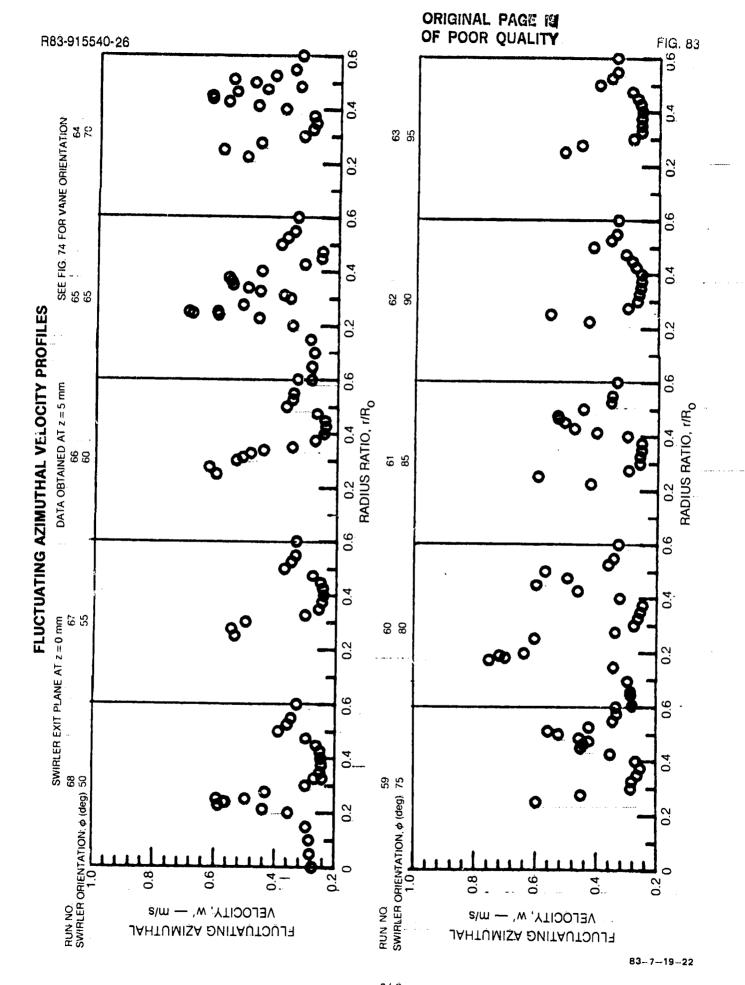


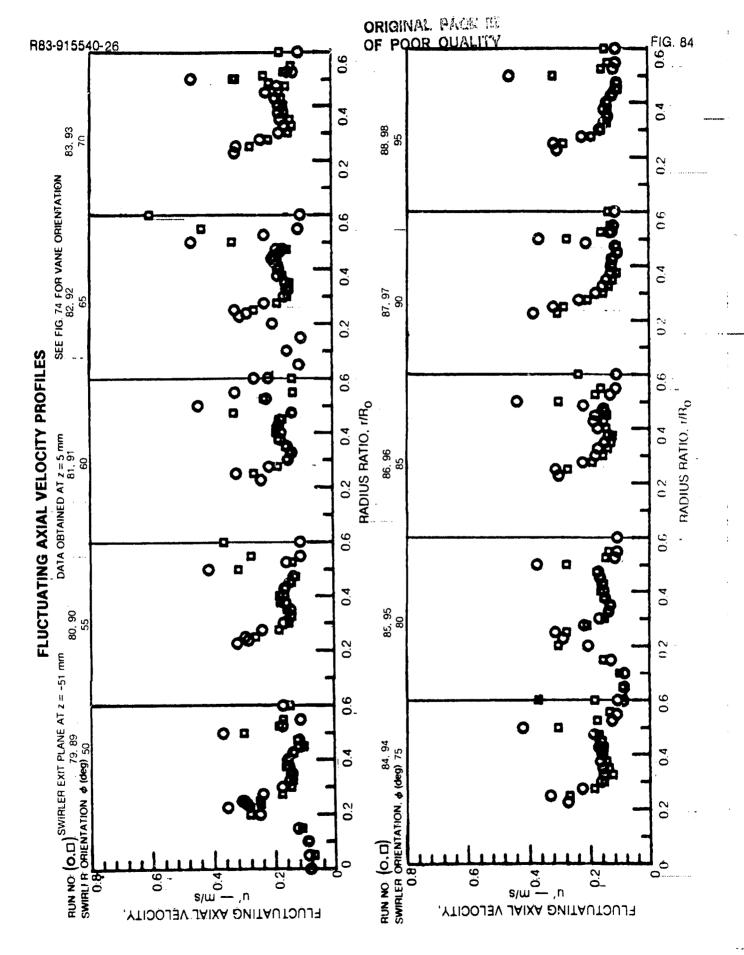


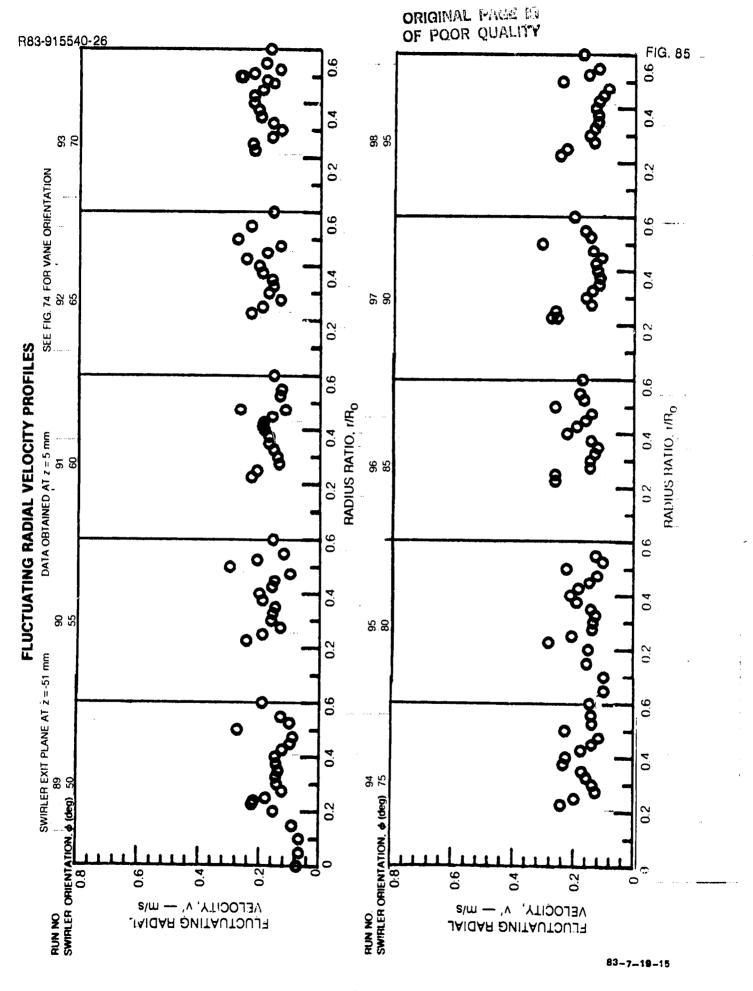




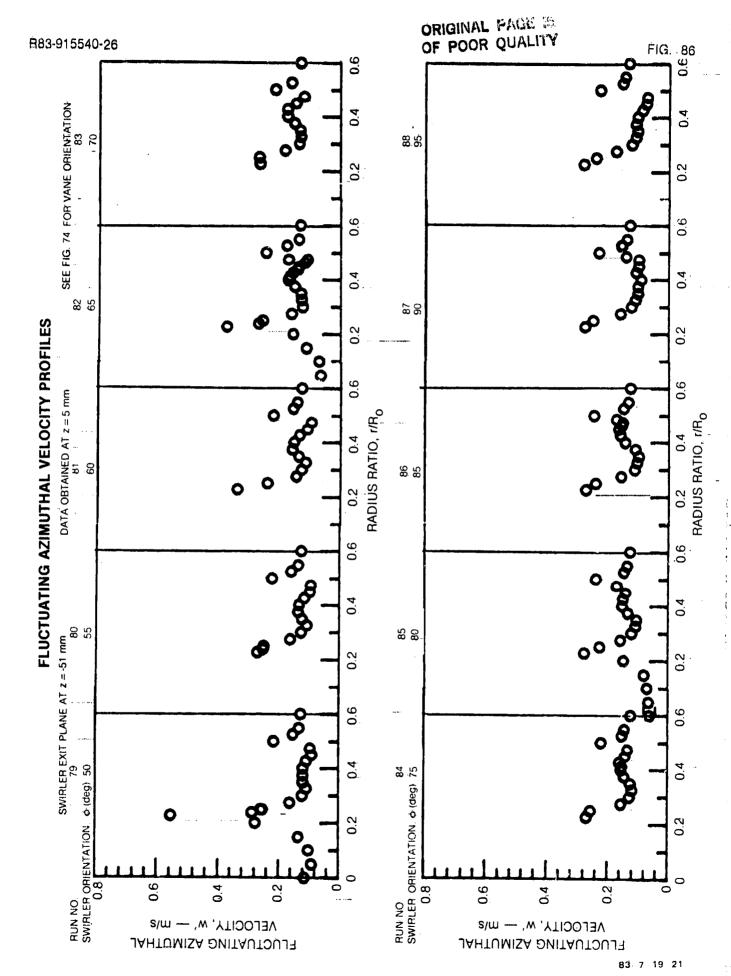


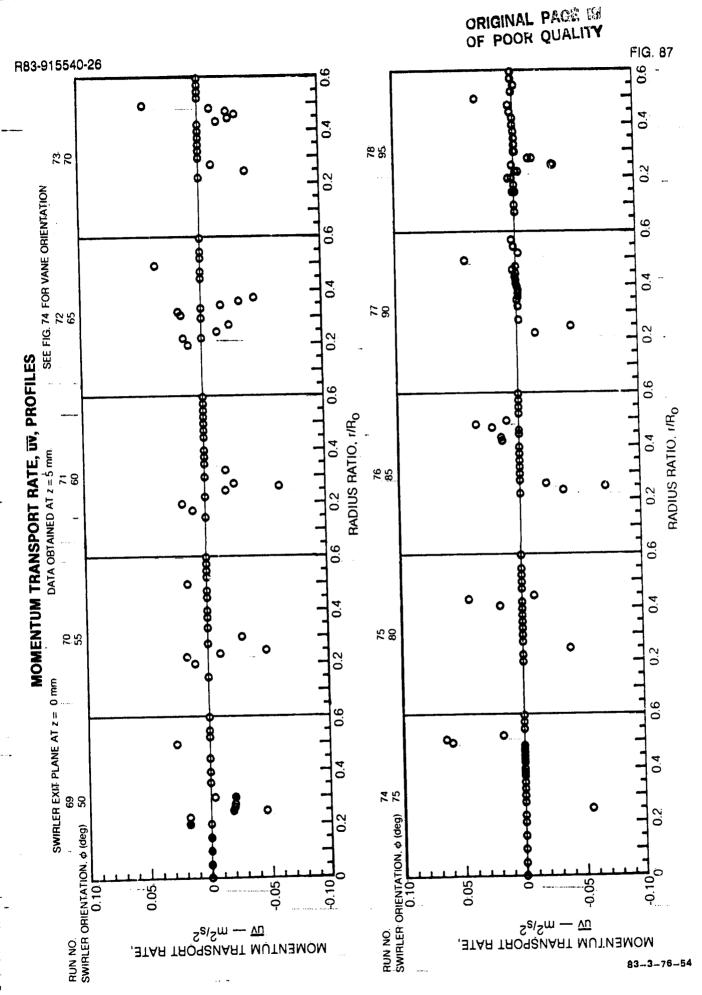

ORIGINAL PASSE DO OF POOR QUALITY

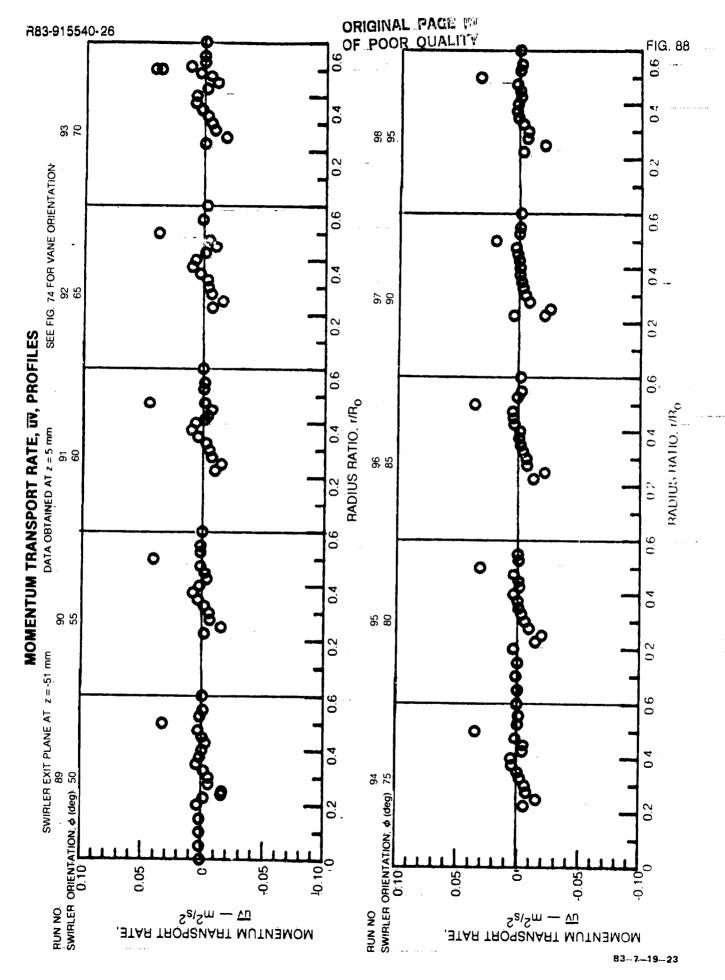


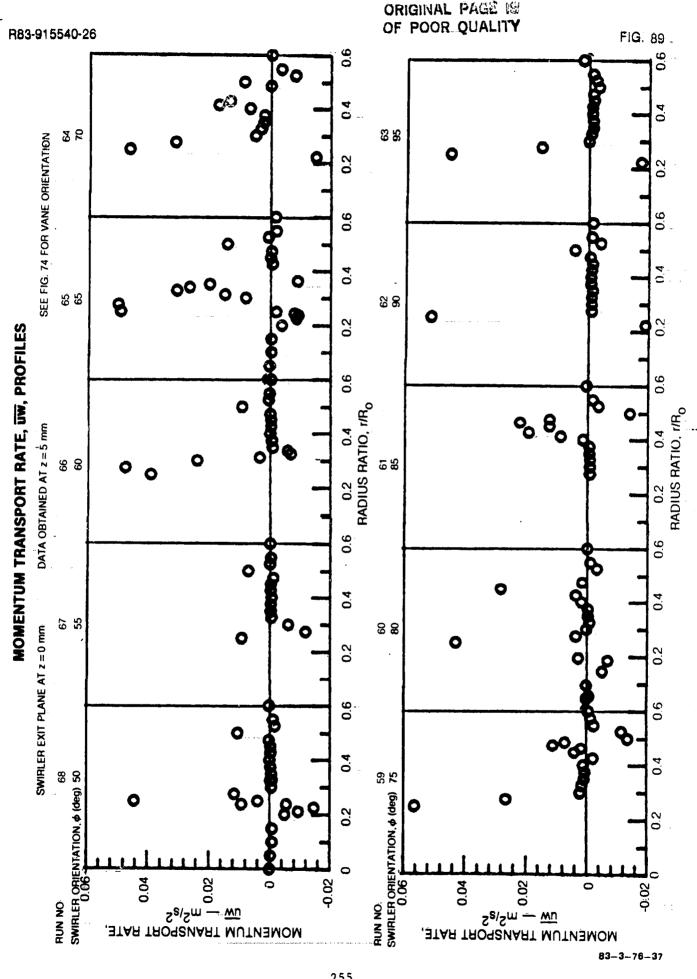


•

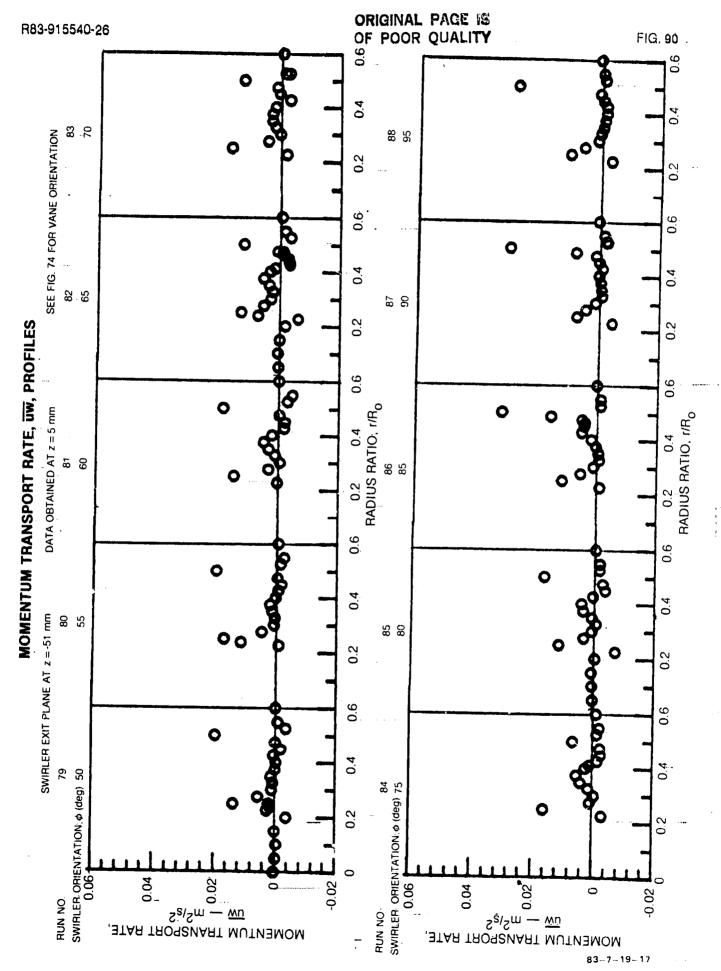








(1)



(+)

